Cho \(m,n,p>0\) thỏa \(m+n+p=\dfrac{1}{m}+\dfrac{1}{n}+\dfrac{1}{p}\).Chứng minh:
\(P=mn+np+pm+\dfrac{3}{m+n+p}\ge4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(n^2+1=n^2+mn+np+pm=n\left(m+n\right)+p\left(m+n\right)=\left(m+n\right)\left(n+p\right)\)
Tương tự: \(m^2+1=\left(m+n\right)\left(m+p\right)\)
\(p^2+1=\left(p+m\right)\left(p+n\right)\)
\(\Rightarrow\dfrac{\left(n^2+1\right)\left(p^2+1\right)}{m^2+1}=\dfrac{\left(n+p\right)^2\left(m+n\right)\left(m+p\right)}{\left(m+n\right)\left(m+p\right)}\)
\(=\left(n+p\right)^2\)
\(\Rightarrow\sqrt{\dfrac{\left(n^2+1\right)\left(p^2+1\right)}{m^2+1}}=n+p\)
Tương tự: \(\sqrt{\dfrac{\left(p^2+1\right)\left(m^2+1\right)}{n^2+1}}=m+p\)
\(\sqrt{\dfrac{\left(m^2+1\right)\left(n^2+1\right)}{p^2+1}}=m+n\)
\(\Rightarrow B=m\left(n+p\right)+n\left(m+p\right)+p\left(m+n\right)\)
\(=2\left(mn+np+pm\right)=2\)
Vậy B=2
\(\dfrac{1}{a^3}+a\ge2\sqrt{\dfrac{a}{a^3}}=\dfrac{2}{a}\) ; \(\dfrac{1}{b^3}+b\ge\dfrac{2}{b}\) ; \(\dfrac{1}{c^3}+c\ge\dfrac{2}{c}\)
\(\Rightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}+a+b+c\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) (1)
Lại có \(\dfrac{4a}{a^4+1}\le\dfrac{4a}{2\sqrt{a^4}}=\dfrac{4a}{2a^2}=\dfrac{2}{a}\)
Tương tự \(\dfrac{4b}{b^4+1}\le\dfrac{2}{b}\) ; \(\dfrac{4c}{c^4+1}\le\dfrac{2}{c}\)
\(\Rightarrow4\left(\dfrac{a}{a^4+1}+\dfrac{b}{b^4+1}+\dfrac{c}{c^4+1}\right)\le2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) (2)
Từ (1),(2)\(\Rightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}+a+b+c\ge4\left(\dfrac{a}{a^4+1}+\dfrac{b}{b^4+1}+\dfrac{c}{c^4+1}\right)\)
Dấu "=" xảy ra khi a=b=c=1