Chứng tỏ rằng 1 số tự nhiên có 2 chữ số chia hết cho 17 khi và chỉ khi tổng của 3 lần chữ số hàng chục và 2 lần chữ số hàng đơn vị của số đó chia hết cho 17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các số có 2 chữ số chia hết cho 17 :
{ 17 ; 34 ; 51 ; 68 ; 85 }
Tổng 3 lần chữ số hàng chục và 2 lần chữ số hàng đơn vị chia hết cho 17 :
17 = 1 x 3 + 7 x 2 = 17 ( đúng )
34 = 3 x 3 + 4 x 2 = 17 ( đúng )
....
, vậy số cần tìm là :
{ 17 ; 34 ; 68 ; 85 }
Thật kì diệu là 17 ; 34 có chung một kết quả ; 68 ; 85 lại có chung tiếp một kết quả
không mún nhận k của mình sao . mau giải để kiếm cơ hội nào
Gọi số tự nhiên có 2 chữ số là ab
Ta có : 3a + 2b \(⋮\)17
=> (3a + 2b) + 17a \(⋮\)17
=> 20a + 2b \(⋮\)17
=> 2(10a + b) \(⋮\)7
=> 10a + b \(⋮\)17
=> ab \(⋮\)17
Xyz sao từ 10a+b chia hết cho 17 lại suy ra được ab chia hết 17 thế
Các số có 2 chữ số chia hết cho 17 :
{ 17 ; 34 ; 51 ; 68 ; 85 }
Tổng 3 lần chữ số hàng chục và 2 lần chữ số hàng đơn vị chia hết cho 17 :
17 = 1 x 3 + 7 x 2 = 17 ( đúng )
34 = 3 x 3 + 4 x 2 = 17 ( đúng )
....
vậy số cần tìm là :
{ 17 ; 34 ; 68 ; 85 }
Có đến 4 số thỏa mãn đề bài .
Vậy điều kiện đã được chứng minh .
Các số có 2 chữ số chia hết cho 17 là : {17;34;51;68;85}
Tổng của 3 lần chữ số hàng chục và hai lần chữ số hàng đơn vị của số đó chia hết cho 17 là :
17 = 1 x 3 + 7 x 2 = 17 (đúng)
34 = 3 x 3 + 4 x 2 = 17 (đúng)
Tương tự : ...
...
Vậy số cần tìm là :
{17;34;68;35}
Thật kì diệu là 17;34 có chung kết quả và 68;35 có chung kết quả