K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2021

Đặt S=x+y, P=x.y
Ta có:S=2a-1, x^2+y^2=S^2-2P=a^2+2a-3
\Rightarrow P=\frac{1}{2}[(2a-1)^2-(a^2+2a-3)]=\frac{1}{2}(3a^2-6a+4)
Trước hết tìm a để hệ có nghiệm.
Điều kiện để hệ có nghiệm:S^2-4P \geq 0 \Leftrightarrow (2a-1)^2-2(3a^2-6a+4)\geq 0
\Leftrightarrow -2a^2+8a-7 \geq 0 \leftrightarrow 2-\frac{\sqrt{2}}{2} \leq a \leq 2+\frac{\sqrt{2}}{2}      (1)
Tìm a để P=\frac{1}{2}(3a^2-6a+4) đạt giá trị nhỏ nhất trên đoạn
        [2-\frac{\sqrt{2}}{2} ;2+\frac{\sqrt{2}}{2}]
Ta có hoành độ đỉnh a_0=\frac{6}{2.3}=1Parabol có bề lõm quay lên do đó \min P=P(2-\frac{\sqrt{2}}{2} )$
Vậy với a=2-\frac{\sqrt{2}}{2}  thì xy đạt giá trị nhỏ nhất.

30 tháng 4 2018

Từ phương trình trên , suy ra :

\(\left(2a-1\right)^2=\left(a^2-2a-3\right)+2xy\)

\(\Leftrightarrow4a^2-4a+1=\left(a^2-2a-3\right)+2xy\)

\(\Leftrightarrow3a^2-2a+4=2xy\)

\(\Leftrightarrow3\left(a^2-\frac{2}{3}a+\frac{4}{3}\right)=2xy\)

\(\Leftrightarrow3\left(a^2-\frac{2}{3}a+\frac{1}{9}\right)+\frac{11}{3}=2xy\)

\(\Leftrightarrow3\left(a-\frac{1}{3}\right)^2+\frac{11}{3}=2xy\)

Nhận thấy \(VT\ge\frac{11}{3}\)suy ra  \(2xy\ge\frac{11}{3}\) => \(xy\ge\frac{11}{6}\)

Vậy Min(xy) = 11/6 <=> a = 1/3

4 tháng 2 2020

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}S=2a-1\\S^2-2P=a^2+2a-3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}S=2a-1\\P=\frac{3a^2-6a+4}{2}\end{cases}}\)

Để hệ có nghiệm thì

\(S^2\ge4P\)

\(\Leftrightarrow\frac{4-\sqrt{2}}{2}\le a\le\frac{4+\sqrt{2}}{2}\)

Giờ tìm giá trị nhỏ nhất của 

\(P=\frac{3a^2-6a+4}{2}\)dễ thấy \(P_{min}\)tại \(a=\frac{4-\sqrt{2}}{2}\)(Đoạn này không khó nên tự làm nha)

10 tháng 9 2020

1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)

\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)

+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)

+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:

\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)

Vậy hệ có nghiệm (1;1),(-1;-1).

2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)

\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)

Vậy hệ có nghiệm (1;1).

31 tháng 3 2018

\(\hept{\begin{cases}\frac{x^2+1}{y}=\frac{y^2+1}{y}\left(1\right)\\x^2+3y^2=4\left(2\right)\end{cases}}\)

ĐK \(x,y\ne0\)

   Từ     \(\frac{y^2+1}{y}=\frac{x^2+1}{x}\Leftrightarrow xy^2+x=x^2y+y\Leftrightarrow\left(xy-1\right)\left(x-y\right)=0\)

           \(\Leftrightarrow\hept{\begin{cases}x=y\\xy=1\end{cases}}\)

+ thay  \(x=y\)vào (2) ta dc ..................

+xy=1 suy ra 1=1/y thay vao 2 ta dc............