cho a,b,c là 3 cạnh của một tam giác.C/m A= \(4a^2b^2-\left(a^2+b^2-c^2\right)^2>0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=4a^2b^2-\left(a^2+b^2-c^2\right)^2=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)
\(=\left[c^2-\left(a-b\right)^2\right]\left[c^2+\left(a+b\right)^2\right]\)
\(=\left(c-a+b\right)\left(c-b+a\right)\left[c^2+\left(a+b\right)^2\right]>0\)
(vì theo bất đẳng thức tam giác thì \(b+c-a>0,a+c-b>0\))
A=(2ab-a^2-b^2+c^2).(2ab+a^2+b^2-c^2)
A=(c^2-(a-b)^2).((a+b)^2-c^2)
A=(c-a+b)(c+a-b)(a+b-c)(a+b+c)
Do c+b-a>0
c+a-b>0
a+b-c>0
a+b+c>0
=>A>0
\(a< b+c\Rightarrow a^2< ab+ac\)
Tương tự:\(b^2< bc+ab;c^2< ca+cb\)
Cộng lại có đpcm
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho!!
a)phân tích đa thức ra nhân tử
M = (a2+b2-c2)2 - 4a2b2 =(a2+b2-c2)2 - (2ab)2 = [ (a2+b2-c2) - 2ab] . [ (a2+b2-c2) + 2ab]
= [(a-b)2-c2] .[(a+b)2-c2] = (a-b-c)(a-b+c)(a+b-c)(a+b+c)
b)chứng minh nếu a,b,c là số đo các cạnh của tam giác thì M<0
M = (a-b-c)(a-b+c)(a+b-c)(a+b+c)
ta biết trong 1 tam giác tổng 2 cạnh luôn lớn hơn cạnh còn lại. Nếu a,b,c là số đo các cạnh của tam giác
ta luôn có: a+b+c > 0; a+b-c>0 ; a-b+c> 0; a-b-c = a -(b+c) <0
Vậy tích M = (a-b-c)(a-b+c)(a+b-c)(a+b+c) <0
olm mootj trang web mat day nhat hanh tinh dot nhien tru 20 diem ma khong lien quan j khong tra loi cau hoi linh tinh ma cung tru diem mat day : bo lao
Do a;b;c là 3 cạnh của 1 tam giác nên: \(\left\{{}\begin{matrix}a+b-c>0\\a+c-b>0\\b+c-a>0\end{matrix}\right.\)
\(A=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)
\(=\left[c^2-\left(a-b\right)^2\right]\left[\left(a+b\right)^2-c^2\right]\)
\(=\left(c+a-b\right)\left(c+b-a\right)\left(a+b-c\right)\left(a+b+c\right)>0\) (đpcm)