Tìm các số nguyên x thỏa mãn:a)(x-3).(x-5)<0
b)(x+2).(x+4)nhỏ hơn hoặc bằng 0. C)(2x-1).(2x-3)nhỏ hơn hoặc bằng 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(x\in\left\{-4;-3;-2;-1;0;1;2;3;4\right\}\)
Tổng là 0
b: \(x\in\left\{-6;-5;-4;-3;-2;-1;0;1;2;3;4;5;6;7\right\}\)
Tổng là 7
a) Có \(\left|x-3y\right|^5\ge0\);\(\left|y+4\right|\ge0\)
\(\rightarrow\left|x-3y\right|^5+\left|y+4\right|\ge0\)
mà \(\left|x-3y\right|^5+\left|y+4\right|=0\)
\(\rightarrow\left\{{}\begin{matrix}\left|x-3y\right|^5=0\\\left|y+4\right|=0\end{matrix}\right.\)
\(\rightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\)
\(\rightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)
b) Tương tự câu a, ta có:
\(\left\{{}\begin{matrix}\left|x-y-5\right|=0\\\left(y-3\right)^4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=3\end{matrix}\right.\)
c. Tương tự, ta có:
\(\left\{{}\begin{matrix}\left|x+3y-1\right|=0\\\left|y+2\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1-3y\\y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=-2\end{matrix}\right.\)
a. \(\left|x-3y\right|^5\ge0,\left|y+4\right|\ge0\Rightarrow\left|x-3y\right|^5+\left|y+4\right|\ge0\) \(\Rightarrow VT\ge VP\)
Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x-3y\right|^5=0\\\left|y+4\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\) Vậy...
b. \(\left|x-y-5\right|\ge0,\left(y-3\right)^4\ge0\Rightarrow\left|x-y-5\right|+\left(y-3\right)^4\ge0\) \(\Rightarrow VT\ge VP\)
Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x-y-5\right|=0\\\left(y-3\right)^4=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=3\end{matrix}\right.\) Vậy ...
c. \(\left|x+3y-1\right|\ge0,3\cdot\left|y+2\right|\ge0\Rightarrow\left|x+3y-1\right|+3\left|y+2\right|\ge0\) \(\Rightarrow VT\ge VP\) Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x+3y-1\right|=0\\3\left|y+2\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1-3y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-\left(-2\right)\cdot3=7\\y=-2\end{matrix}\right.\) Vậy...
a: \(\Leftrightarrow x\in\left\{1;-1;2;-2;3;-3;4;-4;0\right\}\)
Tổng là 0
b: \(\Leftrightarrow x\in\left\{-6;-5;-4;...;4;5;6\right\}\)
Tổng là 0
a) -4 < x < 5
x = {-3;-2;-1;0;1;2;3;4}
Tổng là: (-3) + (-2) + (-1) + 0 + 1 + 2 + 3 + 4
= [(-3) + 3] + [(-2) + 2] + [(-1) + 1] + 0 + 4
= 4
b) -12 < x < 10
x = {-11;-10;...;10}
Tổng là: (-11) + (-10) + ...+ 10
= (-11) + [(-10) + 10] + ... + 0
= -11
c) |x| < 5
x = {-4;-3;-2;-1;0;1;2;3;4}
Tổng là : (-4) + (-3) + (-2) + (-1) + 0 + 1 + 2 + 3 + 4
= [(-4) + 4] + [(-3) + 3] + [(-2) + 2] + [(-1) + 1] + 0
= 0
Các bạn ơi giúp mk với mk đag cần vội,ai trả lời nhanh nhất đúg nhất mk sẽ k cho