Tìm Giá trị của x để biểu thức sau :
a) (5x+7).(2x-1) nhỏ hơn hoặc bằng 0
b) (2x-1).(3-x) lớn hơn hoặc bằng 0
c) (2x-5).(3-2x) lớn hơn hoặc bằng 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: =>(x-4)(x-3)(x-1)>0
=>1<x<3 hoặc x>4
c: =>(2x-1)(x-1)(2x-3)<0
=>x<1/2 hoặc 1<x<3/2
ảnh ko theo trật tự và bị thiếu nên mk sẽ gửi lại 1 tấm nx và mong bn thông cảm cho
a: (2x-3)(3x+6)>0
=>(2x-3)(x+2)>0
=>x<-2 hoặc x>3/2
b: (3x+4)(2x-6)<0
=>(3x+4)(x-3)<0
=>-4/3<x<3
c: (3x+5)(2x+4)>4
\(\Leftrightarrow6x^2+12x+10x+20-4>0\)
\(\Leftrightarrow6x^2+22x+16>0\)
=>\(6x^2+6x+16x+16>0\)
=>(x+1)(3x+8)>0
=>x>-1 hoặc x<-8/3
f: (4x-8)(2x+5)<0
=>(x-2)(2x+5)<0
=>-5/2<x<2
h: (3x-7)(x+1)<=0
=>x+1>=0 và 3x-7<=0
=>-1<=x<=7/3
C=x2-2x-5
=x2-5x+3x-15+10
=x(x-5)+3(x-5)+10
=(x+3)(x-5)+10<=10
DBXRK x=5
\(\frac{x-2}{18}-\frac{2x+5}{12}>\frac{x+6}{9}-\frac{x-3}{6}\)
\(\Leftrightarrow\frac{2\left(x-2\right)}{36}-\frac{3\left(2x+5\right)}{36}>\frac{4\left(x+6\right)}{36}-\frac{6\left(x-3\right)}{36}\)
\(\Leftrightarrow2x-4-6x-15>4x+24-6x+18\)
\(\Leftrightarrow2x-6x-4x+6x>24+18+4+15\)
\(\Leftrightarrow-2x>61\)
\(\Leftrightarrow x< -\frac{61}{2}\)
Vậy nghiệm của bất phương trình là \(x< -\frac{61}{2}\)
Bài b và c làm cách mình thì dễ hiểu hơn nhiều :3
\(\left(2x-2\right)\left(2x+3\right)\le0\)
TH1 : \(\hept{\begin{cases}2x-3\le0\\2x+3\ge0\end{cases}< =>\hept{\begin{cases}2x\le3\\2x\ge-3\end{cases}}}\)
\(< =>\hept{\begin{cases}x\le\frac{3}{2}\\x\ge-\frac{3}{2}\end{cases}}\)
TH2 : \(\hept{\begin{cases}2x-3\ge0\\2x+3\le0\end{cases}< =>\hept{\begin{cases}2x\ge3\\2x\le-3\end{cases}}}\)
\(< =>\hept{\begin{cases}x\ge\frac{3}{2}\\x\le-\frac{3}{2}\end{cases}}\)
Vậy ...
a) `x^2+y^2-2x+4y+5`
`=(x^2-2x+1)+(y^2+4y+4)`
`=(x-1)^2+(y+2)^2 >=0 forall x,y`
b) `-3x^2+2x-5`
`=-(3x^2-2x+5)`
`=-[(\sqrt3 x)^2 -2.\sqrt3 x .\sqrt3/3 + (\sqrt3/3)^2 +14/5]`
`=-(\sqrt3 x-\sqrt3/3)^2-14/5 < 0 forall x`
b) Ta có: \(-3x^2+2x-5\)
\(=-3\left(x^2-\dfrac{2}{3}x+\dfrac{5}{3}\right)\)
\(=-3\left(x^2-2\cdot x\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{14}{9}\right)\)
\(=-3\left(x-\dfrac{1}{3}\right)^2-\dfrac{14}{3}< 0\forall x\)
a, (5x+7)(2x-1) <0
<=> \(\hept{\begin{cases}5x+7< 0\\2x-1>0\end{cases}}\)<=> \(\hept{\begin{cases}5x< 7\\2x< 1\end{cases}}\)
<=> \(\hept{\begin{cases}5x+7>0\\2x-1< 0\end{cases}}\)<=> ..................
(5x+7)(2x-1) =0
<=> \(\orbr{\begin{cases}5x+7=0\\2x-1=0\end{cases}}\)<=> ..................