cmr với mọi n là số tự nhiên ta có n.(n+2).(n+7) chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét n=3k=>n(n+2)(n+7) chia hết cho 3(1)
xét n=3k+1=>n+2=3k+3=3(k+1)
=>n(n+2)(n+7) chia hết cho 3(2)
xét n=3k+2=>n+7=3k+9=3(k+3)
=>n(n+2)(n+7) chia hết cho 3(3)
từ (1);(2);(3)=>n(n+2)(n+7) chia hết cho 3
=>đpcm
Mỗi số khi chia cho 3 thì xảy ra 1 trong 3 trường hợp sau:
n=3k;n=3k+1;n=3k+2 (k là số tự nhiên)
+ Nếu n= 3k thì=> n(n+2)(n+13) chia hết cho 3. (1)
+Nếu n=3k+1 => :n(n+2)(n+13)=(3k+1)(3k+1+2)(3k+1+13)
=(3k+1)(3k+3)(3k+14)
=(3k+1)(k+1)3(3k+14)
Vì 3 chia hết cho 3=>(3k+1)(k+1)3(3k+14) chia hết cho 3.
Hay n(n+2)(n+13) chia hết cho 3. (2)
+Nếu n=3k+2 =>n(n+2)(n+13)=(3k+2)(3k+2+2)(3k+2+13)
=(3k+2)(3k+4)(3k+15)
=(3k+2)(3k+4)(k+5)3
Vì 3 chia hết cho 3=>(3k+2)(3k+4)(k+5)3 chia hết cho 3.
Hay n(n+2)(n+13) chia hết cho 3. (3)
Từ (1),(2) và (3) => với mọi số tự nhiên n thì n(n+2)(n+13) chia hết cho 3.
Vậy với mọi số tự nhiên n thì n(n+2)(n+13) chia hết cho 3.
Ta có: \(5.19^n+1\equiv2.1^n+1\equiv0\left(mod3\right)\)=> ĐPCM
Bài 5:
Ta có: \(3n+4⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;0;8;-6\right\}\)
cảm ơn nha!!! Cho mik/em hỏi sao có mỗi bài 5 vậy bạn/anh/chị.
n . ( n + 2 ) . ( n + 7 )
= n . n . n ( 2 + 7 )
= n3 ( 2 + 7 )
= n3 . 9
Vì n3 bắt buộc phải chia hết cho 3 và 9 chia hết cho 3
=> n . ( n + 2 ) . ( n + 7 ) sẽ chia hết cho 3 với mọi số tự nhiên
n.(n+2).(n+7)
=n.n.n.(2+7)
=n^3.(2+7)
=2^3.9
n^3 chia hết cho 3;9 nên n.(n+2).(2+7) xẽ chia hết cho 3 với mọi số tự nhiên