K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2019

bạn lên app QuandA hỏi nha, gia sư sẽ cho bạn đáp án chính xác

17 tháng 12 2019

\(DK:x\in\left(-\frac{1}{4};4\right)\)

PT\(\Leftrightarrow\frac{1}{4}\sqrt{4-x}+\frac{1}{\sqrt{4-x}}+2\sqrt{4x+1}+\frac{2}{\sqrt{4x+1}}+\frac{7}{4}\sqrt{4-x}-\sqrt{4x+1}=\frac{15}{2}\)

Ta co:

\(\frac{1}{4}\sqrt{4-x}+\frac{1}{\sqrt{4-x}}\ge^{ }1\left(1\right)\)

\(2\sqrt{4x+1}+\frac{2}{\sqrt{4x+1}}\ge4\left(2\right)\)

Dau '=' xay ra khi \(x=0\)

Xet

\(\frac{7}{4}\sqrt{4-x}-\sqrt{4x+1}=\frac{5}{2}\left(3\right)\)

\(\Leftrightarrow\frac{-\frac{7}{4}x}{\sqrt{4-x}+2}-\frac{4x}{\sqrt{4x+1}+1}=0\)

\(\Leftrightarrow x\left(\frac{7}{4\sqrt{4-x}+8}+\frac{4}{\sqrt{4x+1}+1}\right)=0\)

\(\Leftrightarrow x=0\left(n\right)\)

Tuc la \(\left(3\right)\)đúng khi \(x=0\) \(\left(4\right)\)

\(\left(1\right),\left(2\right),\left(4\right)\Rightarrow VT\ge\frac{15}{2}=VP\)

Khi \(x=0\)

16 tháng 12 2016

a/ ĐK: \(x \ge -1\). Đặt \(\sqrt{x+1}=a \ge 0\)
PT: \(\Leftrightarrow6a-3a-2a=5\)
\(\Leftrightarrow a=5\)
\(\Leftrightarrow x+1=15\Leftrightarrow x=24\)
(nhận)

b,c: Hai ý này đều làm theo cách bình phương hoặc đưa về phương trình chứa dấu giá trị tuyệt đối được nhé.

b) Cách 1: ĐKXĐ: Tự tìm
\(\sqrt{x^{2}-4x+4}=2\Leftrightarrow x^{2}-4x+4=4\Leftrightarrow x(x-4)=0\)
\(\Leftrightarrow x=0\) hoặc \(x=4\) cả 2 cái này đều TMĐK

Cách 2: \((\sqrt{x^2-4x+4}=2)\)
\(\Leftrightarrow \sqrt{(x-2)^2}=2\)
\(\Leftrightarrow \mid x-2\mid=2\)
Với \(x\geq 2\) thì :
\(x-2=2 \Leftrightarrow x=4\) (nhận)
Với \(x<2\) thì
\(-x-2=2\Leftrightarrow x=0\) (nhận)
Vậy \(S={0;4}\)

c) Cách 1: \(\sqrt{x^{2}-6x+9}=x-2\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x^{2}-6x+9=x^{2}-4x+4 \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x=\frac{5}{2} \end{matrix}\right.\)
Nghiệm TMĐK

Cách 2: \((\sqrt{x^2-6x+9}=x-2)\)
\(\Leftrightarrow \mid x-3\mid =x-2\)
Với \(x\geq 3\) thì
\(x-3=x-2\Leftrightarrow 0x=-1\) ( vô lý)
Với \(x<3\) thì
\(-x+3=x-2\Leftrightarrow -2x=-5 \Leftrightarrow x=\frac{5}{2}\)
Vậy \(S={\frac{5}{2}}\)
d) ĐKXĐ: Tự tìm
\(\sqrt{x^{2}+4}=\sqrt{2x+3}\Leftrightarrow x^{2}+4=2x+3\Leftrightarrow x^{2}-2x+1=0\Leftrightarrow (x-1)^{2}=0\)
\(\Leftrightarrow x=1\)
e) ĐKXĐ: \(x\geq \frac{3}{2}\)
\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\Leftrightarrow \frac{2x-3}{x-1}=4\Rightarrow 2x-3=4x-4\Leftrightarrow x=\frac{1}{2}\)
Nghiệm không TMĐK.
Phương trình vô nghiệm.
f) ĐKXĐ: \(x\geq \frac{-15}{2}\)
\(x+\sqrt{2x+15}=0\Leftrightarrow 2x+2\sqrt{2x+15}=0\Leftrightarrow 2x+15+2\sqrt{2x+15}+1-16=0\)
\(\Leftrightarrow (\sqrt{2x+15}+1)^{2}-4^{2}=0\Leftrightarrow (\sqrt{2x+15}+5)(\sqrt{2x+15}-3)=0\)
\(\Leftrightarrow \sqrt{2x+15}-3=0\Leftrightarrow \sqrt{2x+15}=3\Leftrightarrow 2x+15=9\Leftrightarrow x=-3\) (TMĐK)

16 tháng 12 2016

Giời, có thế cũng hok hiểu, lật sách giải ra coi :v

21 tháng 1 2020

\(Đkxđ:\hept{\begin{cases}2x-1>0\\4x-3>0\\x>0\end{cases}\Leftrightarrow x>\frac{3}{4}}\)

Phương trình tương đương với: 

\(\left(\frac{x}{\sqrt{2x-1}}-1\right)+\left(\frac{x}{\sqrt[4]{4x-3}}-1\right)=0\)

\(\Leftrightarrow\frac{x-\sqrt{2x-1}}{\sqrt{2x-1}}+\frac{2-\sqrt[4]{4x-3}}{\sqrt[4]{4x-3}}=0\)

\(\Leftrightarrow\frac{x^2-2x+1}{\sqrt{2x-1}\left(x+\sqrt{2x-1}\right)}+\frac{x^2-\sqrt{4x-3}}{\sqrt[4]{4x-3}\left(x+\sqrt[4]{4x-3}\right)}=0\)

\(\Leftrightarrow\frac{\left(x-1\right)^2}{\sqrt{2x-1}\left(x+\sqrt{2x-1}\right)}+\frac{x^4-4x+3}{\sqrt[4]{4x-3}\left(x+\sqrt[4]{4x-3}\right)\left(x^2+\sqrt{4x-3}\right)}=0\)

\(\Leftrightarrow\frac{\left(x-1\right)^2}{\sqrt{2x-1}\left(x+\sqrt{2x-1}\right)}+\frac{\left(x-1\right)^2\left(x^2+2x+3\right)}{\sqrt[4]{4x-3}\left(x+\sqrt[4]{4x-3}\right)\left(x^2+\sqrt{4x-3}\right)}=0\)

\(\Leftrightarrow\left(x-1\right)^2\left[\frac{1}{\sqrt{2x-1}\left(x+\sqrt{2x-1}\right)}+\frac{\left(x+1\right)^2+2}{\sqrt[4]{4x-3}\left(x+\sqrt[4]{4x-3}\right)\left(x^2+\sqrt{4x-3}\right)}\right]=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

Vậy .............................

5 tháng 7 2019

\(ĐK:x\ge\frac{3}{2}\)

Đặt : \(\sqrt{4x^2+9}=a;\sqrt{2x-3}=b\); a lớn hơn  0; b lớn hơn hoặc bằng 0

ta có: \(a^2-b^2=4x^2+9-2x+3=2\left(2x^2-x+6\right)\)

Ta có phương trình:

\(\frac{a^2-b^2}{2x}=a+b\Leftrightarrow\frac{\left(a-b\right)\left(a+b\right)}{2x}=a+b\)

mà a+b lớn hơn 0

phương trình trên <=> \(\frac{a-b}{2x}=1\Leftrightarrow a-b=2x\)( chia hai vế cho a+b)

Khi đó ta có phương trình ẩn x

\(\sqrt{4x^2+9}-\sqrt{2x-3}=2x\)

=> \(4x^2+9+2x-3-2\sqrt{\left(4x^2+9\right)\left(2x-3\right)}=4x^2\)

<=> \(3+x=\sqrt{8x^3-12x^2+18x-27}\)

<=> \(8x^3-13x^2+12x-36=0\)

<=> \(\left(x-2\right)\left(8x^2+3x+18\right)\)=0

<=> x=2  (tmđk)

thử lại vào phương trình ban đầu thấy thỏa mãn

Vậy x=2

16 tháng 8 2020

Đặt: \(\sqrt{2x+1}=a,\sqrt{3-2x}=b\)

Từ đó: \(\sqrt{4x-4x^2+3}=ab\)và \(4=a^2+b^2\)

Từ đó biến đổi và giải phương trình. Đây là một cách. (T chưa giải ra :V)

16 tháng 8 2020

Hoặc là không cần đặt ẩn phụ, biến đổi luôn:

VT=\(\frac{\left(2x-1\right)^2.\left(2x+1\right)\left(3-2x\right)}{\left(2x+1\right)+\left(3-2x\right)}\)

VP=\(\sqrt{2x+1}+\sqrt{3-2x}+2\sqrt{2x+1}.\sqrt{3-2x}+\left(\sqrt{2x+1}\right)^2+\left(\sqrt{3-2x}\right)^2\)

=\(\left(\sqrt{2x+1}+\sqrt{3x+2}\right)\left(\sqrt{2x+1}+\sqrt{3x+2}+1\right)\)

Đến đây có vẻ đơn giản r :>