cho a,b thoả mãn : a*a*a+2*b*b-4*b+3=0 va a*a+a*a*b*b-2*b=0. Tính : a*a+b*b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Đậu Đình Kiên - Toán lớp 7 - Học toán với OnlineMath
Ta có: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
\(\Rightarrow\frac{abc}{c\left(a+b\right)}=\frac{abc}{a\left(b+c\right)}=\frac{abc}{b\left(c+a\right)}\)
\(\Rightarrow c\left(a+b\right)=a\left(b+c\right)=b\left(c+a\right)\)
\(\Rightarrow ac+bc=ab+ac=bc+ab\)
Lại có: \(ac+bc=ab+ac\)\(\Rightarrow bc=ab\)\(\Rightarrow a=c\) (1)
\(ab+ac=bc+ab\)\(\Rightarrow ac=bc\)\(\Rightarrow a=b\) (2)
Từ (1) và (2) \(\Rightarrow a=b=c\)
Ta có: \(P=\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=\frac{a.a^2+b.b^2+c.c^2}{a^3+b^3+c^3}=\frac{a^3+b^3+c^3}{a^3+b^3+c^3}=1\)
ĐK : a;b;c khác 0
Thấy : \(a^2+b^2+c^2=\left(a+b+c\right)^2\Leftrightarrow ab+bc+ac=0\) (1)
Ta có : \(P=\dfrac{b+c}{a}+\dfrac{c+a}{b}+\dfrac{a+b}{c}\)
Từ (1) suy ra : \(\left(b+c\right)a=-bc\Leftrightarrow\dfrac{b+c}{a}=\dfrac{-bc}{a^2}\)
CMTT ; ta có : \(\dfrac{c+a}{b}=\dfrac{-ac}{b^2};\dfrac{a+b}{c}=\dfrac{-ab}{c^2}\)
Suy ra : \(P=-\left(\dfrac{ab}{c^2}+\dfrac{bc}{a^2}+\dfrac{ac}{b^2}\right)=-\dfrac{a^3b^3+b^3c^3+a^3c^3}{a^2b^2c^2}\) (2)
Đặt : ab = x ; bc = y ; ac = z ; ta có : x + y + z = 0 \(\Rightarrow x^3+y^3+z^3=3xyz\) (3)
Từ (2) và (3) suy ra : \(P=-\dfrac{3xyz}{xyz}=-3\)
Vậy ...