cho P = \(\frac{1}{2000.1999}-\frac{1}{1999.1998}-....-\frac{1}{3.2}-\frac{1}{2.1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow P=\frac{1}{2000.1999}-\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{1998.1999}\right)\)
\(=\frac{1}{2000.1999}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1998}-\frac{1}{1999}\right)\)
\(=\frac{1}{2000.1999}-\left(1-\frac{1}{1999}\right)\)
\(=\frac{1}{1999.2000}-\frac{1998}{1999}\)
\(\Rightarrow P+\frac{1997}{1999}=\frac{1}{1999.2000}-\frac{1998}{1999}+\frac{1997}{1999}\)
\(=\frac{-1}{2000}\)
P= \(\frac{1}{2000.1999}\)- (\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1998.1999}\))
= \(\frac{1}{1999}-\frac{1}{2000}\)- (\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1998}-\frac{1}{1999}\))
= \(\frac{1}{1999}-\frac{1}{2000}\)- ( \(1-\frac{1}{1999}\))
= \(\frac{1}{1999}-\frac{1}{2000}-\frac{1998}{1999}\)
= \(\frac{-1997}{1999}-\frac{1}{2000}\)
=) P + \(\frac{1997}{1999}\)= \(\frac{-1997}{1999}-\frac{1}{2000}+\frac{1997}{1999}=\frac{-1}{2000}\)
Ta có:
\(P=\frac{1}{2000.1999}-\frac{1}{1999.1998}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(\Rightarrow P=\frac{1}{1999.2000}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1998.1999}\right)\)
\(\Rightarrow P=\frac{1}{1999.2000}-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1998}-\frac{1}{1999}\right)\)
\(\Rightarrow P=\frac{1}{1999.2000}-\left(1-\frac{1}{1999}\right)\)
\(\Rightarrow P=\frac{1}{1999.2000}-\frac{1998}{1999}\)
\(\Rightarrow P=\frac{1}{1999}-\frac{1}{2000}-\frac{1998}{1999}\)
\(\Rightarrow P=\left(\frac{1}{1999}-\frac{1998}{1999}\right)-\frac{1}{2000}\)
\(\Rightarrow P=\frac{-1997}{1999}-\frac{1}{2000}\)
\(\Rightarrow P+\frac{1997}{1999}=\frac{-1997}{1999}-\frac{1}{2000}+\frac{1}{1997}\)
\(\Rightarrow P+\frac{1997}{1999}=\frac{-1}{2000}\)
Vậy....
\(P=\frac{1}{2000.1999}+\frac{1}{1999.1998}+...+\frac{1}{3.2}+\frac{1}{2.1}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1998.1999}+\frac{1}{1999.2000}\)
\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1998}-\frac{1}{1999}+\frac{1}{1999}-\frac{1}{2000}\)
\(=\frac{1}{2}-\frac{1}{2000}=\frac{999}{2000}\)
\(P=\frac{1}{2000.1999}+\frac{1}{1999.1998}+..+\frac{1}{3.2}+\frac{1}{2.1}\)
=\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1998.1999}+\frac{1}{1999.2000}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{1999}-\frac{1}{2000}\)
=\(1-\frac{1}{2000}\)
=\(\frac{1999}{2000}\)
Số hạng đầu tiên không theo quy luật hả (+) hày (-) đề thế nào làm vậy:
\(P=\frac{1}{2000.1998}-\left(\frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{1998.1999}\right)=\frac{1}{1999.2000}-Q\)
Tổng quát ta có \(\frac{1}{a}-\frac{1}{b}=\frac{b-a}{ab}\) với dãy trên ta luôn có b-a=1
\(Q=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1998}-\frac{1}{1999}=1-\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}-\frac{1}{3}\right)-.....-\frac{1}{1999}\)
\(Q=1-\frac{1}{1999}\Rightarrow P=\frac{1}{1999.2000}-1+\frac{1}{1999}=\frac{1-1999.2000+2000}{1999.2000}=\frac{1-1998.2000}{1999.2000}\)
\(P+\frac{1997}{1998}=\frac{1997}{1998}+\frac{1-1998.2000}{1999.2000}\) xem lại đề
Hôm kia giải thi chơi được 260, làm được bài này luôn. Hôm sau, làm lại chả biết làm.
\(P=\frac{1}{2000.1999}-\frac{1}{1999.1998}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(\Rightarrow P=\frac{1}{2000.1999}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1998.1999}+\frac{1}{1999.2000}\right)\)
\(\Rightarrow P=\frac{1}{2000.1999}-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1999}-\frac{1}{2000}\right)\)
\(\Rightarrow P=\frac{1}{1999.2000}-\left(1-\frac{1}{2000}\right)\)
\(\Rightarrow P=\frac{1}{1999}-\frac{1}{2000}-\frac{1999}{2000}\)
\(\Rightarrow P=\frac{1}{1999}-1\)
\(\Rightarrow P=\frac{-1998}{1999}\)
\(\Rightarrow P+\frac{1997}{1999}=\frac{-1}{1999}\)
Vậy...
3) 2x3-1=15 <=> x3=16/2=8=23 => x=2
\(\frac{x+16}{9}=\frac{y-25}{16}=\frac{z+9}{25}=\frac{x+16+y-25+z+9}{9+16+25}=\frac{x+y+z}{50}\)
=> \(\frac{x+16}{9}=\frac{x+y+z}{50}\)=> x+y+z=\(\frac{50\left(x+16\right)}{9}\)=\(\frac{50\left(2+16\right)}{9}=\frac{50.18}{9}=50.2=100\)
Vậy x+y+z=100
\(D=\dfrac{1}{2000.1999}-\dfrac{1}{1999.1998}-\dfrac{1}{9998.1997}-............-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(\Leftrightarrow D=\dfrac{1}{2000.1999}-\left(\dfrac{1}{1999.1998}+\dfrac{1}{1998.1997}+........+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)
\(\Leftrightarrow D=\dfrac{1}{2000.1999}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+..........+\dfrac{1}{1998}-\dfrac{1}{1999}\right)\)
\(\Leftrightarrow D=\dfrac{1}{2000.1999}-\left(1-\dfrac{1}{1999}\right)\)
\(\Leftrightarrow D=\dfrac{1}{2000.1999}-\dfrac{1998}{1999}\)
\(A=\dfrac{1}{2000.1999}-\dfrac{1}{1999.1998}-\dfrac{1}{1998.1997}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)\(A=\dfrac{1}{1999.2000}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{1997.1998}+\dfrac{1}{1998.1999}\right)\)
\(A=\dfrac{1}{1999.2000}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{1997}-\dfrac{1}{1998}+\dfrac{1}{1998}-\dfrac{1}{1999}\right)\)
\(A=\dfrac{1}{1999.2000}-\dfrac{1998}{1999}\)
P=(1/2000*1999)-(1/1999*1998)-...-(1/3*2)-(1/2*1)
P=(1/2000*1999)- [(1/1999*1998)+(1/1998*1997)+...+(1/2*1)]
P=(1/2000*1999)-[(1/1999)-(1/1998)+(1/1998)-(1/1997)+...+(1/2)-1]
P=(1/2000*1999)-[(1/1999)+1]
P=(1/3998000)-(2000/1999)
P=( -3999999/3998000
1023/1024 là đáp số đúng