Cho A= ( \(\frac{1}{2.2}\)-1).( \(\frac{1}{3.3}\)-1).( \(\frac{1}{4.4}\)-1)...( \(\frac{1}{100.100}\)-1)
So sánh A với -\(\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{10.10}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}< 1\)
=>A<1
Đặt \(A=\frac{1}{2.2}+\frac{1}{3.3}+.....+\frac{1}{100.100}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{99.100}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< 1-\frac{1}{100}\)
\(\Rightarrow A< \frac{99}{100}\)
Mà \(\frac{99}{100}< 1\Rightarrow A< \frac{99}{100}< 1\)
\(\Rightarrow A< 1\)
S= 1/2 - 1/2 + 1/3 - 1/3 + 1/4 - 1/4 +...+ 1/50 - 1/50
S= 0 + 0 + 0 +...+ 0
S= 0
Ta có:
\(\frac{1}{2.2}\)<\(\frac{1}{1.2}\)
\(\frac{1}{3.3}\)<\(\frac{1}{2.3}\)
..............
\(\frac{1}{1009.1009}\)<\(\frac{1}{1008.1009}\)
=>A< \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1008.1009}\)
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1008}-\frac{1}{1009}\)
=\(\frac{1}{1}-\frac{1}{1009}=\frac{1008}{1009}>\frac{1008}{1344}=\frac{3}{4}\)
=>A<\(\frac{3}{4}\)
Mình nghĩ bạn cần xem lại :
\(A< \frac{1008}{1009}>\frac{1008}{1344}=\frac{3}{4}\)không có nghĩa là \(A< \frac{3}{4}\)
Xem lại ..
Ta có : \(\frac{1}{2.2}< \frac{1}{1.2}\)
\(\frac{1}{3.3}< \frac{1}{2.3}\)
\(\frac{1}{4.4}< \frac{1}{3.4}\)
...................
\(\frac{1}{100.100}< \frac{1}{99.100}\)
Suy Ra : \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+......+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{99.100}\)
\(\frac{1}{2.2}+\frac{1}{3.3}+.....+\frac{1}{100.100}< 1-\frac{1}{100}=\frac{99}{100}< 1\)
Ta có : \(\frac{1}{2.2}\)\(< \frac{1}{1.2}\)
\(\frac{1}{3.3}\)\(< \frac{1}{2.3}\)
\(\frac{1}{4.4}\)\(< \frac{1}{3.4}\)
...... .... ......
\(\frac{1}{100.100}\)\(< \frac{1}{99.100}\)
\(\Rightarrow\)\(\frac{1}{2.2}\)+ \(\frac{1}{3.3}\)+ \(\frac{1}{4.4}\)+ ..... + \(\frac{1}{100.100}\)< \(\frac{1}{1.2}\)+ \(\frac{1}{2.3}\)+ \(\frac{1}{3.4}\)+ ..... + \(\frac{1}{99.100}\)
\(\frac{1}{2.2}\)+ \(\frac{1}{3.3}\)+ .... + \(\frac{1}{100.100}\)< \(1-\frac{1}{100}=\frac{99}{100}< 1\)