cho phương trình: x2-2(m+2)x+4m+3=0
a) giải phương trình khi m=-3
b) chứng minh rằng với mọi m, phương trình luôn có hai nghiệm phân biệt
gọi x1 x2 là 2 nghiệm của phương trình. tính A=x12+x22-10(x1+x2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Với m= 2, ta có phương trình: x 2 + 2 x − 3 = 0
Ta có: a + b + c = 1 + 2 − 3 = 0
Theo định lý Viet, phương trình có 2 nghiệm:
x 1 = 1 ; x 2 = − 3 ⇒ S = 1 ; − 3 .
b) Chứng minh rằng phương trình luôn có nghiệm ∀ m .
Ta có: Δ ' = m − 1 2 − 1 + 2 m = m 2 ≥ 0 ; ∀ m
Vậy phương trình luôn có nghiệm ∀ m .
c) Theo định lý Viet, ta có: x 1 + x 2 = − 2 m + 2 x 1 . x 2 = 1 − 2 m
Ta có:
x 1 2 . x 2 + x 1 . x 2 2 = 2 x 1 . x 2 + 3 ⇔ x 1 . x 2 x 1 + x 2 − 2 = 6 ⇒ 1 − 2 m − 2 m + 2 − 2 = 6 ⇔ 2 m 2 − m − 3 = 0
Ta có: a − b + c = 2 + 1 − 3 = 0 ⇒ m 1 = − 1 ; m 2 = 3 2
Vậy m= -1 hoặc m= 3/2
a: a=1; b=2m; c=-1
Vì a*c<0 nên (2) luôn có hai nghiệm phân biệt
b: \(x_1^2+x_2^2-x_1x_2=7\)
=>\(\left(x_1+x_2\right)^2-3x_1x_2=7\)
=>\(\left(-2m\right)^2-3\cdot\left(-1\right)=7\)
=>4m^2=7-3=4
=>m^2=1
=>m=1 hoặc m=-1
PT $(*)$ là PT bậc nhất ẩn $x$ thì làm sao mà có $x_1,x_2$ được hả bạn?
PT cuối cũng bị lỗi.
Bạn xem lại đề!
`a)Delta`
`=m^2-4(m-1)`
`=m^2-4m+4`
`=(m-2)^2>=0`
`=>` pt luôn có nghiệm với mọi m
b)Áp dụng vi-ét:
`x_1+x_2=m,x_1.x_2=m-1`
`=>x_1^2+x_2^2`
`=(x_1+x_2)^2-2x_1.x_2`
`=m^2-2(m-1)`
`=m^2-2m+1`
Với `m=3`
`=>x_1^2+x_2^2=9-6+1=4`
a: Δ=(m+1)^2-4m=(m-1)^2>=0
=>Phương trình luôn có nghiệm
b: x1^2+x2^2+3x1x2=5
=>(x1+x2)^2+x1x2=5
=>(m+1)^2+m=5
=>m^2+3m-4=0
=>(m+4)(m-1)=0
=>m=1 hoặc m=-4
a/ thay m=-3 vào pt ta dc : x2 - 2 * (-1) *x -12 +3 = 0 => x2 +2x - 9 = 0
\(\Delta\)= 1 + 9 = 10 => x1 = -1 + căng 10
x2 = -1 - căng 10
b/ có : \(\Delta\)' = [ - (m+2) ] 2 - (4m + 3) = m2 + 4m + 4 - 4m - 3 = m2 + 1 > 0 vs mọi m => có 2 nghiệm pb
có : A = x12 + x22 - 10( x1 + x2) = (x1+x2)2 - 2x1x2 - 10( x1 + x2 ) = ( 2m + 4 )2 - 2 ( 4m + 3 ) - 10 ( 2m + 4 ) = 4m2 + 16m + 16 - 8m - 6 - 20m -40 = 4m2 -12m -30
rồi bn bấm máy tính ra kết quả nha ^^
a) Thay m=-3 vào phương trình ta được :
x2-2((-3)+2))x+4*(-3)+3=0
x2+2x-9=0
ta có đen ta phẩy =1+9=10
vì đen ta > 0 nên phương trình có 2 nghiệm phân biệt :
x1=-1-(căn 10)
x2=-1+(căn 10)
Vậy pt có nghiệm là {-1-(căn 10) ; -1+(căn 10)}
bn ơi mk chỉ lm đc phần a thôi phần b bn thử tính đen ta > 0 theo m ở pt ban đầu xem
b)