K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBEA và ΔBEC có

BE chung

EA=EC

BA=BC

=>ΔBEA=ΔBEC

b: góc DBE=góc EBC

góc DEB=góc EBC

=>góc DBE=góc DEB

=>ΔDBE cân tại D

Xét ΔABC có

E là trung điểm của AC

ED//BC

=>D là trung điểm của AB

c: Xét tứ giác KBEA có

D là trung điểm chung của KE và BA

góc BEA=90 độ

=>KBEA là hcn

=>KB vuông góc BE

a) Xét tứ giác ADME có 

ME//AD(gt)

MD//AE(gt)

Do đó: ADME là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành ADME có \(\widehat{EAD}=90^0\)(\(\widehat{BAC}=90^0,E\in AC,D\in AB\))

nên ADME là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: ADME là hình chữ nhật(cmt)

nên ED=AM(Hai đường chéo trong hình chữ nhật ADME)

mà ED=5cm(gt)

nên AM=5cm

Ta có: ΔABC vuông tại A(gt)

mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

\(\Leftrightarrow BC=2\cdot AM=2\cdot5=10\left(cm\right)\)

Xét ΔABC có AH là đường cao ứng với cạnh BC(gt)

nên \(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{4.8\cdot10}{2}=24\left(cm^2\right)\)

c) Xét ΔABC có 

M là trung điểm của BC(gt)

ME//AB(gt)

Do đó: E là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)

Xét ΔABC có 

M là trung điểm của BC(gt)

MD//AC(gt)

Do đó: D là trung điểm của AB(Định lí 1 về đường trung bình của tam giác)

Ta có: ΔAHB vuông tại H(AH⊥BC tại H)

mà HD là đường trung tuyến ứng với cạnh huyền AB(D là trung điểm của AB)

nên \(HD=\dfrac{AB}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(AD=\dfrac{AB}{2}\)(D là trung điểm của AB)

nên HD=AD

Ta có: ΔAHC vuông tại H(AH⊥BC tại H)

mà HE là đường trung tuyến ứng với cạnh huyền AC(E là trung điểm của AC)

nên \(HE=\dfrac{AC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(AE=\dfrac{AC}{2}\)(E là trung điểm của AC)

nên HE=AE

Xét ΔEAD và ΔEHD có 

EA=EH(cmt)

ED chung

AD=HD(cmt)

Do đó: ΔEAD=ΔEHD(c-c-c)

\(\widehat{EAD}=\widehat{EHD}\)(hai góc tương ứng)

mà \(\widehat{EAD}=90^0\)(\(\widehat{BAC}=90^0\), D∈AB, E∈AC)

nên \(\widehat{EHD}=90^0\)

hay HD⊥HE(đpcm)

24 tháng 6 2017

A B C H E D 3 4

a)

Xét \(\Delta ABC\) và \(\Delta HBA\)có:

\(\widehat{BAC}=\widehat{AHB}\left(=90^ô\right)\)

\(\widehat{ABC}\)là góc chung (giả thiết)

Suy ra \(\Delta ABC\)đồng dạng với \(\Delta HBA\)(g.g)

b)

\(\Delta ABC\)vuông tại A

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)

\(\Delta ABC\)đồng dạng với \(\Delta HBA\)

\(\Rightarrow\frac{AC}{AH}=\frac{BC}{AB}\Leftrightarrow AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=2,4\left(cm\right)\)

c) Ta có

\(\hept{\begin{cases}\text{AH//DE}\\\widehat{AHC}=90^o\end{cases}\Rightarrow\widehat{CDE}=90^o}\)

Xét \(\Delta ABC\)và \(\Delta DEC\)

\(\widehat{BAC}=\widehat{CDE}=90^o\)

\(\widehat{ACB}\)là góc chung (giả thiết)

Suy ra \(\Delta ABC\)đồng dạng với \(\Delta DEC\)(g.g)

\(\Rightarrow\frac{CA}{CB}=\frac{CD}{CE}\Leftrightarrow CE.CA=CD.CB\left(đpcm\right)\)

d)

\(\Delta AHB\)vuông tại H

\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{3^2-2,4^2}=1,8\left(cm\right)\)

Ta có;   \(CD=BC-BH-DH=5-1,8-2,4=0,8\left(cm\right)\)

Ta lại có: 

\(\frac{CA}{CB}=\frac{CD}{CE}\)(theo câu c)

\(\Rightarrow EC=\frac{CB.CD}{CA}=\frac{5.0,8}{4}=1\left(cm\right)\)

Ta lại có:

\(AE=AC-EC=4-1=3\left(cm\right)\)

mà \(AB=3cm\)nên \(AB=AE\)hay \(\Delta ABE\)cân tại A

Vậy \(\Delta ABE\)cân tại A

24 tháng 6 2017

Hình vẽ ko được chính xác bạn thông cảm

19 tháng 12 2020

Cứng đờ tay luôn rồi, khổ quá:((

a) Xét \(\Delta DBF\) và \(\Delta FED:\)

DF:cạnh chung

\(\widehat{BDF}=\widehat{EFD}\)(AB//EF)

\(\widehat{BFD}=\widehat{EDF}\)(DE//BC)

=> \(\Delta BDF=\Delta EFD\left(g-c-g\right)\)

b) (Ở lớp 8 thì sé có cái đường trung bình ý bạn, nó sẽ có tính chất luôn, nhưng lớp 7 chưa học đành làm theo lớp 7 vậy)

Ta có: \(\widehat{DAE}+\widehat{AED}+\widehat{EDA}=180^o\) (Tổng 3 góc trong 1 tam giác)

Lại có: \(\widehat{AED}+\widehat{DEF}+\widehat{FEC}=180^o\)  

Mà \(\widehat{DEF}=\widehat{EDA}\)(AB//EF)

=>\(\widehat{DAE}=\widehat{FEC}\)

Xét \(\Delta DAE\) và \(\Delta FEC:\)

DA=FE(=BD)

\(\widehat{DAE}=\widehat{EFC}\left(=\widehat{DBF}\right)\)

\(\widehat{DAE}=\widehat{FEC}\) (cmt)

=>\(\Delta DAE=\Delta FEC\left(g-c-g\right)\)

=> DE=FC(2 cạnh t/ứ)

=> Đpcm