K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2018

Chứng minh được:

C B F ^ + B E M ^   =   M D F ^ + D E C ^ = 90 0

=>  B M D ^ = 90 0  nên M thuộc đường tròn đường kính BD. Mà E Î BC nên quỹ tích của điểm M là là cung B C ⏜  của đường tròn đường kính BD

27 tháng 5 2022

△AOE và △BOG có:

\(AO=BO\) (O là tâm hình vuông ABCD).

\(AE=BG\)

\(\widehat{OAE}=\widehat{OBG}=45^0\)

\(\Rightarrow\)△AOE=△BOG (c-g-c).

\(\Rightarrow OE=OG;\widehat{AOE}=\widehat{BOG}\)

Mà \(\widehat{AOE}+\widehat{BOE}=90^0\) \(\Rightarrow\widehat{GOE}=\widehat{BOG}+\widehat{BOE}=90^0\)

\(\Rightarrow\)△OGE vuông cân tại O.

12 tháng 11 2021

EP//BD chứ ạ

12 tháng 11 2021

đợi xíu làm cho

NV
20 tháng 4 2023

Đặt cạnh hình vuông là a, ta có \(BD=\sqrt{a^2+a^2}=a\sqrt{2}\)

\(\Rightarrow BO=\dfrac{1}{2}BD=\dfrac{a\sqrt{2}}{2}\Rightarrow BO.BD=a^2\)

Xét 2 tam giác vuông AED và MAB có:

\(\left\{{}\begin{matrix}\widehat{ADE}=\widehat{MBA}=90^0\\\widehat{AED}=\widehat{MAB}\left(slt\right)\end{matrix}\right.\) \(\Rightarrow\Delta AED\sim\Delta MAB\left(g.g\right)\)

\(\Rightarrow\dfrac{AD}{BM}=\dfrac{ED}{AB}\Rightarrow BM.ED=AD.AB=a^2\)

\(\Rightarrow BM.ED=BO.BD\)

Mà \(ED=BF\) (do \(BC=CD\) và \(CE=CF\))

\(\Rightarrow BM.BF=BO.BD\Rightarrow\dfrac{BM}{BD}=\dfrac{BO}{BF}\)

Xét hai tam giác BOM và BFD có:

\(\left\{{}\begin{matrix}\dfrac{BM}{BD}=\dfrac{BO}{BF}\\\widehat{OBM}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta BOM\sim\Delta BFD\left(c.g.c\right)\)

NV
20 tháng 4 2023

loading...

a: Xét ΔAFD vuông tại D và ΔAEB vuông tại B có

AD=AB

góc FAD=góc EAB

Do đó: ΔAFD=ΔAEB

b: ΔAFD=ΔAEB

=>AF=AE

=>ΔAFE cân tại A

mà AI là trung tuyến

nên AI vuông góc với EF

Xét ΔINE vuông tại I và ΔIMF vuông tại I có

IE=IF
góc IEN=góc IFM

Do đó: ΔINE=ΔIMF

=>IN=IM

Xét tứ giác MFNE có

I là trung điểm chung của MN và FE

MN vuông góc với FE

Do đó: MFNE là hình thoi