c/minh bất đẳng thức côsi (cho 2 số x,y ≥0)
c/m: x+y ≥ 2\(\sqrt{xy}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(3=xy+yz+xz\leq \frac{(x+y+z)^2}{3}\Rightarrow x+y+z\geq 3\)
Áp dụng BĐT AM-GM:
\(x^3+8=(x+2)(x^2-2x+4)\leq \left(\frac{x+2+x^2-2x+4}{2}\right)^2\)
\(\Rightarrow \sqrt{x^3+8}\leq \frac{x^2-x+6}{2}\Rightarrow \frac{x^2}{\sqrt{x^3+8}}\geq \frac{2x^2}{x^2-x+6}\)
Thực hiện tương tự với các phân thức còn lại và cộng theo vế:
\(\Rightarrow \text{VT}\geq \underbrace{2\left(\frac{x^2}{x^2-x+6}+\frac{y^2}{y^2-y+6}+\frac{z^2}{z^2-z+6}\right)}_{M}\)
Áp dụng BĐT Cauchy-Schwarz:
\(M\geq \frac{2(x+y+z)^2}{x^2-x+6+y^2-y+6+z^2-z+6}=\frac{2(x+y+z)^2}{x^2+y^2+z^2-(x+y+z)+18}\)
\(\Leftrightarrow M\geq \frac{2(x+y+z)^2}{(x+y+z)^2-(x+y+z)+12}\) (do $xy+yz+xz=3$)
Mà :
\(\frac{(x+y+z)^2}{(x+y+z)^2-(x+y+z)+12}-1=\frac{(x+y+z)^2+(x+y+z)-12}{(x+y+z)^2-(x+y+z)+12}=\frac{(x+y+z-3)(x+y+z+4)}{(x+y+z)^2-(x+y+z)+12}\geq 0\) do $x+y+z\geq 0$
Do đó: \(M\geq 1\Rightarrow \text{VT}\geq 1\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z=1\)
\(\left|\frac{x+y}{2}-\sqrt{xy}\right|+\left|\frac{x+y}{2}+\sqrt{xy}\right|=\left|\frac{x+2\sqrt{xy}+y}{2}\right|+\left|\frac{x-2\sqrt{xy}+y}{2}\right|\)
=\(\left|\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{2}\right|+\left|\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{2}\right|\) (*)
Có \(\left(\sqrt{x}+\sqrt{y}\right)^2\ge0\Rightarrow\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{2}\ge0\)
\(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\Rightarrow\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{2}\ge0\)
\(\Rightarrow\) (*) \(\Leftrightarrow\) \(\frac{x+2\sqrt{xy}+y+x-2\sqrt{xy}+y}{2}=\frac{2\left(x+y\right)}{2}=x+y=\left|x\right|+\left|y\right|\) ( vì x ; y >0)
Với x,y < 0 , đẳng thức trên sai ngay từ bước biến đổi (*) , vì x,y <0 thì \(\sqrt{x}\) và \(\sqrt{y}\) không xác định
Với \(x;y< 0\) đẳng thức vẫn đúng, do \(x;y< 0\Rightarrow xy>0\) ta biến đổi như sau:
\(\left|\frac{-\left|x\right|-\left|y\right|-2\sqrt{\left|x\right|\left|y\right|}}{2}\right|+\left|\frac{-\left|x\right|-\left|y\right|+2\sqrt{\left|x\right|\left|y\right|}}{2}\right|\)
\(=\left|\frac{-\left(\left|x\right|+2\sqrt{\left|x\right|\left|y\right|}+\left|y\right|\right)}{2}\right|+\left|\frac{-\left(\left|x\right|-2\sqrt{\left|x\right|\left|y\right|}+\left|y\right|\right)}{2}\right|\)
\(=\left|\frac{-\left(\sqrt{\left|x\right|}+\sqrt{\left|y\right|}\right)^2}{2}\right|+\left|\frac{-\left(\sqrt{\left|x\right|}-\sqrt{\left|y\right|}\right)^2}{2}\right|\)
\(=\frac{\left(\sqrt{\left|x\right|}+\sqrt{\left|y\right|}\right)^2}{2}+\frac{\left(\sqrt{\left|x\right|}-\sqrt{\left|y\right|}\right)^2}{2}\)
\(=\left|x\right|+\left|y\right|\)
Lời giải:
ĐK: $x,y,z\geq 0$
Áp dụng BĐT Cô-si:
\(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\geq 3\sqrt[3]{\frac{xyz}{(x+1)(y+1)(z+1)}}\)
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq 3\sqrt[3]{\frac{1}{(x+1)(y+1)(z+1)}}\)
Cộng theo vế và thu gọn:
\(3\geq 3.\frac{\sqrt[3]{xyz}+1}{\sqrt[3]{(x+1)(y+1)(z+1)}}\Leftrightarrow (x+1)(y+1)(z+1)\geq (1+\sqrt[3]{xyz})^3\)
Dấu "=" xảy ra khi $x=y=z$
Thay vào pt $(1)$ thì suy ra $x=y=z=1$
Dễ thấy:
\(VT\ge\left(x+y\right)^2+1-\dfrac{\left(x+y\right)^2}{4}=\dfrac{3\left(x+y\right)^2}{4}+1\)
Áp dụng Cô-si:
\(\dfrac{3\left(x+y\right)^2}{4}+1\ge2\sqrt{\dfrac{3\left(x+y\right)^2}{4}.1}=\sqrt{3}\left|x+y\right|\ge\sqrt{3}\left(x+y\right)\)
Do đó:
\(\left(x+y\right)^2+1-xy\ge\sqrt{3}\left(x+y\right),\forall x,y\in R\)
\(x^2+xy+y^2+1>0\)
\(\Leftrightarrow x^2+2.x.\frac{1}{2}y+\frac{1}{4}y^2+\frac{3}{4}y^2+1>0\)
\(\Leftrightarrow\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>1\)
=>ĐPCM
\(x^4+x^2+2>0\)
\(\Leftrightarrow\left(x^2\right)^2+2x^2.\frac{1}{2}+\frac{1}{4}+\frac{7}{4}\)
\(\Leftrightarrow\left(x^2+\frac{1}{2}\right)^2+\frac{7}{4}>\frac{7}{4}\)
=>ĐPCM
\(\left(x+3\right)\left(x-11\right)+2003>0\)
\(\Leftrightarrow x^2-8x-33+2003>0\)
\(\Leftrightarrow x^2-8x+16+1954>0\)
\(\Leftrightarrow\left(x-4\right)^2+1954>1954\)
=>ĐPCM
\(-9x^2+12x-15< 0\)
\(\Leftrightarrow-\left(3x^2+2.3.2x+4+11\right)< 0\)
\(\Leftrightarrow-\left[\left(3x+2\right)^2+11\right]< 11\)
=>ĐPCM
\(-5-\left(x-1\right)\left(x+2\right)< 0\)
\(\Leftrightarrow-5-\left(x^2-x-2\right)< 0\)
\(\Leftrightarrow-5-\left(x^2-2x.\frac{1}{2}+\frac{1}{4}-\frac{9}{4}\right)< 0\)
\(\Leftrightarrow-5-\left[\left(x-\frac{1}{2}\right)^2-\frac{9}{4}\right]< \frac{-11}{4}\)
=>ĐPCM
vì x , y > 0 ta có
(\(\sqrt{x}\) - \(\sqrt{y}\))2 ≥ 0 ( ∀ x,y >0
⇔ x -2\(\sqrt{xy}\) + y ≥ 0 ( ∀ x,y >0)
⇔ x + y ≥ 2\(\sqrt{xy}\) (đpcm)