K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2016

quy đồng cái biểu thức =1 ta có 

(x(z+x)(x+y)+y(y+z)(x+y)+z(y+z)(z+x))/(y+z)(z+x)(x+y)=1 

suy ra x(z+x)(x+y)+y(y+z)(x+y)+z(y+z)(z+x)=(y+z)(z+x)(x+y) 

x(z+x)(x+y)+y(y+z)(x+y)+z(y+z)(z+x)-(y+z)(z+x)(x+y)=0 

x^3+y^3+z^3+xyz=0(bước này bạn tự tính rút gọn nhan) 

xyz=-x^3-y^3-z^3 

quy đồng A ta có (x^2(z+x)(x+y)+y^2(y+z)(x+y)+z^2(y+z)(z+x))/(y+z)(z+x)(x+y)

mik chỉ xét tử thôi nhan cộng lại hết ta có 

x^4+y^4+z^4+x^2yz+xy^2z+xyz^2+x^3y+xy^3+x^3z+xz^3+y^3z+yz^3

thế xyz=-x^3-y^3-z^3 ta có 

=x^4+y^4+z^4+x(-x^3-y^3-z^3)+y(-x^3-y^3-z^3)+z(-x^3-y^3-z^3)+x^3y+xy^3+x^3z+xz^3+y^3z+yz^3 

rút gọn sẽ bằng 0 

suy ra A=0 

28 tháng 12 2016

có cách khác không bạn cách này mỏi quá!

21 tháng 1 2016

à nhầm ở dòng 3 cáii\(\frac{y-x}{x-y}=k\) chứ ko phải như trên đâu nha

 

21 tháng 1 2016

<=>\(\frac{x+y}{z}=\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y+y+z+x+z}{z+x+y}=\frac{2.\left(x+y+z\right)}{x+y+z}=2\)

CHO a,b,c>0 thỏa mãn: \(a^2b^2+b^2c^2+c^2a^2\ge a^2+b^2+c^2\)CMR: \(\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(a^2+c^2\right)}\ge\frac{\sqrt{3}}{2}\)ĐẶT \(A=\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(c^2+a^2\right)}\)ĐẶT:\(\frac{1}{a}=x,\frac{1}{y}=b,\frac{1}{z}=c\)\(\Rightarrow x^2+y^2+z^2\ge1\)\(\Rightarrow...
Đọc tiếp

CHO a,b,c>0 thỏa mãn: \(a^2b^2+b^2c^2+c^2a^2\ge a^2+b^2+c^2\)

CMR: \(\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(a^2+c^2\right)}\ge\frac{\sqrt{3}}{2}\)

ĐẶT \(A=\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(c^2+a^2\right)}\)

ĐẶT:\(\frac{1}{a}=x,\frac{1}{y}=b,\frac{1}{z}=c\)

\(\Rightarrow x^2+y^2+z^2\ge1\)

\(\Rightarrow A=\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{z^2+y^2}\)

TA CÓ:

\(x\left(y^2+z^2\right)=\frac{1}{\sqrt{2}}\sqrt{2x^2\left(y^2+z^2\right)\left(y^2+z^2\right)}\le\frac{1}{\sqrt{2}}\sqrt{\frac{\left(2x^2+2y^2+2z^2\right)^3}{27}}=\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)TƯƠNG TỰ:

\(y\left(x^2+z^2\right)\le\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2},z\left(x^2+y^2\right)\le\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)LẠI CÓ:
\(A=\frac{x^3}{y^2+z^2}+\frac{y^3}{x^2+z^2}+\frac{z^3}{x^2+y^2}=\frac{x^4}{x\left(y^2+z^2\right)}+\frac{y^4}{y\left(x^2+z^2\right)}+\frac{z^4}{z\left(x^2+y^2\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x\left(y^2+z^2\right)+y\left(x^2+z^2\right)+z\left(x^2+y^2\right)}\ge\frac{1}{3.\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}} \)\(\ge\frac{\sqrt{3}}{2}\sqrt{x^2+y^2+z^2}\ge\frac{\sqrt{3}}{2}\)

DẤU BẰNG XẢY RA\(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\Rightarrow DPCM\)

 

2
10 tháng 9 2018

tự ra câu hởi tự trả lời à bạn

10 tháng 9 2018

tại tui trả lời bài này cho 1 bạn ở trên facebook nên phải chụp màn hình lại nên làm v á

2 tháng 1 2019

a) \(A=\frac{2}{x-y}+\frac{2}{y-z}+\frac{2}{z-x}+\frac{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

         \(=\frac{2\left(y-z\right)\left(z-x\right)+2\left(x-y\right)\left(z-x\right)+2\left(x-y\right)\left(y-z\right)+\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

           \(=\frac{\left[\left(x-y\right)+\left(y-z\right)+\left(z-x\right)\right]^2}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=\frac{\left(x-y+y-z+z-x\right)^2}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=0\)

Áp dụng: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

2 tháng 1 2019

b)Ta có: \(\frac{x^2}{y+z}+x=\frac{x^2+x\left(y+z\right)}{y+z}=\frac{x^2+xy+xz}{y+z}=\frac{x\left(x+y+z\right)}{y+z}\)

    Tương tự:   \(\frac{y^2}{x+z}+y=\frac{y^2+xy+zy}{x+z}=\frac{y\left(x+y+z\right)}{x+z}\)

                \(\frac{z^2}{x+y}+z=\frac{z^2+xz+zy}{x+y}=\frac{z\left(x+y+z\right)}{x+y}\)

Suy ra: \(A+\left(x+y+z\right)\)

\(=\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{z+x}+\frac{z\left(x+y+z\right)}{x+y}+\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}+1\right)\)

  \(=2.\left(x+y+z\right)\)

Nên \(A=2.\left(x+y+z\right)-\left(x+y+z\right)=x+y+z\)

Mình có sai chỗ nào không nhỉ?

20 tháng 8 2016

a)  \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)

\(\Rightarrow x+y+z=\frac{1}{2}\)(do 1/(x+y+z)=2)

\(\Rightarrow y+z=\frac{1}{2}-x;z+x=\frac{1}{2}-y;x+y=\frac{1}{2}-z\)

Thay vào lần lượt ta có:

\(\frac{\frac{1}{2}-x+1}{x}=2\)\(\Rightarrow x=\frac{1}{2}\)

\(\frac{\frac{1}{2}-y+2}{y}=2\)\(\Rightarrow y=\frac{5}{6}\)

\(\frac{\frac{1}{2}-z-3}{z}=2\)\(\Rightarrow z=-\frac{5}{6}\)

25 tháng 12 2016

\(\Rightarrow\left(\frac{x}{x+y}+\frac{y}{z+x}+\frac{z}{x+y}\right)\cdot\left(x+y+z\right)=x+y+z\)

\(\Rightarrow\frac{x^2}{y+z}+\frac{xy}{y+z}+\frac{xz}{y+z}+\frac{y^2}{z+x}+\frac{xy}{z+x}+\frac{yz}{z+x}+\frac{z^2}{x+y}+\frac{xz}{x+y}+\frac{yz}{x+y}=x+y+z\)

Rồi bạn cộng 2 phân thức 2,3 5,6 8,9 lại thì được

\(\Rightarrow\frac{x^2}{y+z}+x+\frac{y^2}{z+x}+y+\frac{z^2}{x+y}+z=x+y+z\)

\(\Rightarrow\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)

28 tháng 1 2017

Dễ thấy \(x+y+z\ne0\)

Ta có :

\(\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\)

\(=\left(x+y+z\right)\left(\frac{x}{y+z}\right)+\left(x+y+z\right)\left(\frac{y}{x+z}\right)+\left(x+y+z\right)\left(\frac{z}{x+y}\right)\)

\(=\frac{x^2}{y+z}+x+\frac{y^2}{x+z}+y+\frac{z^2}{x+y}+z\)

\(=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}+x+y+z\)

\(\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\)

\(=\left(x+y+z\right).1=x+y+z\)

=> \(x+y+z=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}+x+y+z\)

=> \(0=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)

Làm xong thấy bài tui làm hới ... @@

28 tháng 1 2017

nhân cả 2 vế với x+y+z ta có

\(\frac{x^2+xy+xz}{y+z}+\frac{y^2+yz+yx}{z+x}+\frac{z^2+zx+zy}{x+y}\)=x+y+z

nên\(\frac{x^2}{y+z}+x+\frac{y^2}{z+x}+y+\frac{z^2}{x+y}+z=x+y+z\)

=> \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)