Tìm x biết: a, (x+3).(x-3)+x.(3-x)=0
b, x.(x-3)+x-3=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a\right):2x-7\sqrt{x}+3=0\left(x\ge0\right)\\ < =>\left(2x-6\sqrt{x}\right)-\left(\sqrt{x}-3\right)=0\\ < =>2\sqrt{x}\left(\sqrt{x}-3\right)-\left(\sqrt{x}-3\right)=0\\ < =>\left(2\sqrt{x}-1\right)\left(\sqrt{x}-3\right)=0\\ =>\left[{}\begin{matrix}2\sqrt{x}-1=0\\\sqrt{x}-3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{1}{4}\left(TM\right)\\x=9\left(TM\right)\end{matrix}\right.\)
\(\left(b\right):3\sqrt{x}+5< 6\\ < =>3\sqrt{x}< 1\\ < =>\sqrt{x}< \dfrac{1}{3}\\ < =>0\le x< \dfrac{1}{9}\)
\(\left(c\right):x-3\sqrt{x}-10< 0\\ < =>\left(x-5\sqrt{x}\right)+\left(2\sqrt{x}-10\right)< 0\\ < =>\sqrt{x}\left(\sqrt{x}-5\right)+2\left(\sqrt{x}-5\right)< 0\\ < =>\left(\sqrt{x}-5\right)\left(\sqrt{x}+2\right)< 0\\ =>\left\{{}\begin{matrix}\sqrt{x}-5< 0\\\sqrt{x}+2>0\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}0\le x< 25\\x\ge0\end{matrix}\right.< =>0\le x< 25\)
\(\left(d\right):x-5\sqrt{x}+6=0\left(x\ge0\right)\\ < =>\left(x-2\sqrt{x}\right)-\left(3\sqrt{x}-6\right)=0\\ < =>\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=0\\ < =>\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)=0\\ =>\left[{}\begin{matrix}\sqrt{x}-3=0\\\sqrt{x}-2=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=9\\x=4\end{matrix}\right.\left(TM\right)\)
\(\left(e\right):x+5\sqrt{x}-14< 0\\ < =>\left(x+7\sqrt{x}\right)-\left(2\sqrt{x}+14\right)< 0\\ < =>\sqrt{x}\left(\sqrt{x}+7\right)-2\left(\sqrt{x}+7\right)< 0\\ < =>\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)< 0\\ =>\left\{{}\begin{matrix}\sqrt{x}+7>0\\\sqrt{x}-2< 0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x\ge0\\0\le x< 4\end{matrix}\right.< =>0\le x< 4\)
a) (x+5)(x-4)=0
<=> x+5=0 hoặc x-4=0
<=> x=-5 hoặc x=4
b) (x-1)(x-3)=0
<=> x-1=0 hoặc x-3=0
<=> x=1 hoặc x=3
a) (x+5).(9x-4)=0
=> x+5=0 hoặc 9x-4=0
Nếu x+5=0: x=0-5=-5
Nếu 9x-4=0: 9x=0+4=4
x=4/9
b) (x-1).(x-3)=0
=> x-1=0 hoặc x-3=0
Nếu x-1=0: x=0+1=1
Nếu x-3=0: x=0+3=3
c) (3-x).(x-3)=0
=> 3-x=0 hoặc x-3=0
Nếu 3-x=0: x=3-0=0
Nếu x-3=0: x=0+3=3
d) x.(x+1)=0
=> x=0 hoặc x+1=0
Nếu x+1=0: x=0-1=-1
a) (x + 5)(x - 4) = 0
x + 5 = 0 hoặc x - 4= 0
x thuộc {-5 ; 4}
b) (x - 10)(x- 3) = 0
x - 10 = 0 hoặc x - 3 = 0
x thuộc {3;10}
c) (3 - x)(x - 3) = 0
3 - x = 0 ; x - 3 = 0
< = . x= 3 (thõa mãn cả 2 ĐK)
d) x(x + 1) = 0
x = 0 hoặc x+ 1 = 0
=> x = -1
Vậy x thuộc {-1 ; 0}
a)(x+5)(x-4)=0
nên x+5=0 hoặc x-4=0
x=0-5 x=0+4
x=-5 x=4
b)(x-10)(x-3)=0
nên x-10=0 hoặc x-3=0
x=0+10 x=0+3
x=10 x=3
c)(3-x)(x-3)=0
nên 3-x=0 hoặc x-3=0
x=3-0 x=0+3
x=3
d)x(x+1)=0
nên x=0 hoặc x+1=0
x=0-1
x=-1
\(a,\left(x+3\right)\left(x-3\right)+x\left(3-x\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x-3\right)-x\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x+3-x\right)=0\)
\(\Rightarrow3\left(x-3\right)=0\)
\(\Rightarrow x-3=0\)
\(\Rightarrow x=3\)
\(b,x\left(x-3\right)+x-3=0\)
\(\Rightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-3=0\\x+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\x=-1\end{cases}}}\)
đặt nhân tử chung rồi tính