Kí hiệu [x] là phần nguyên lớn nhất không vượt quá x và đọc là 'PHẦN NGUYÊN CỦA x' có nghĩa là: [x] thuộc Z và [x]nhỏ hơn hoặc bằng x nhỏ hơn hoặc bằng [x]+1.
Áp dụng tìm :
[5/6] ; [1/3] ; [4,24] ; [-7] ;[2013]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(2< 2,3< 3\Rightarrow\left[2,3\right]=2\)
\(0< \frac{1}{2}< 1\Rightarrow\left[\frac{1}{2}\right]=0\)
\(-4\le-4< -3\Rightarrow\left[-4\right]=-4\)
\(-6< 5,16< -5\Rightarrow\left[-5;16\right]=-6\)
+) 2 < 2,3 < 3
=> [ 2,3 ] = 2
+) \(0< \frac{1}{2}< 1\)
\(\Rightarrow\left[\frac{1}{2}\right]=0\)
+) \(-4\le-4< -3\)
\(\Rightarrow\left[-4\right]=-4\)
+) -6 < -5,16 < -5
=> [ - 5,16 ] = - 6
Ta có: 2 < 2,3 < 3 ⇒ [2,3] = 2
0 < 1/2 < 1 ⇒ [1/2]=0
-4 ≤ -4 < -3 ⇒ [-4] = -4
-6 < -5,16 < -5 ⇒ [-5,16] = -6
Ta có \(-2< -\dfrac{4}{3}< -1\) nên \(\left[-\dfrac{4}{3}\right]=-2\).
\(0< \dfrac{1}{2}< 1\) nên \(\left[\dfrac{1}{2}\right]=0\).
a) /x-2/ nhỏ hơn hoặc bằng 2
vì /a/ \(\ge\)0
mà /x-2/\(\le\)2
\(\Rightarrow\)/x-2/={0;1;2}
Nếu /x-2/=0
x-2 =0
\(\Rightarrow\)x=2
Nếu /x-2/=1
x-2 =1
\(\Rightarrow\)x=3
Nếu /x-2/=2
x-2 =2
\(\Rightarrow\)x=4
Vì x\(\in\)Z nên x={2;3;4}
b) /x-3/ nhỏ hơn hoặc bằng 0
Vì /a/\(\ge\)0
mà /x-3/\(\le\)0
nên /x-3/=0
x-3 =0
\(\Rightarrow\)x=3
1) Giải theo cách lớp 8 nhé:
Áp dụng BĐT (a + b)² >= 4ab (với a,b là các số không âm). Dấu "=" xảy ra khi a = b. C/m đơn giản thôi, bạn chuyển vế đưa về hằng đẳng thức đúng.
(x + y)² >= 4xy
(y + z)² >= 4yz
(x + z)² >= 4xz
Nhân theo vế 3 BĐT trên có: (x + y)²(y + z)²(x + z)² >= 64x²y²z²
=> (x + y)(y + z)(z + x) >= 8xyz (vì x,y,z >= 0)
2) ĐK để các phân thức có nghĩa: a + b; b + c; c +a khác 0.
Ta có: a²/(a +b) + b²/(b + c) + c²/(c + a) = b²/(a +b) + c²/(b + c) + a²/(c + a) (*)
<=> a²/(a +b) + b²/(b + c) + c²/(c + a) - b²/(a +b) - c²/(b + c) - a²/(c + a) = 0
<=> (a² - b²)/(a + b) + (b² - c²)/(b + c) + (c² - a²)/(c + a) = 0
<=> (a - b)(a + b)/(a + b) + (b - c)(b + c)/(b + c) + (c - a)(c + a)/(c + a) = 0
<=> a - b + b - c + c - a = 0
<=> 0 = 0 (1)