Chứng tỏ rằng:
\(B=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{(2n^2)}\le\frac{1}{4}\)\(\frac{1}{4}\)
GIÚP MÌNH VỚI. MÌNH CẦN GẤP!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4B< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}\)
\(4B< \frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{n+1-n}{n\left(n+1\right)}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(4B< 1-\frac{1}{n+1}\Rightarrow B< \frac{1}{4}-\frac{1}{4\left(n+1\right)}< \frac{1}{4}\)
Ta có :
\(\frac{1}{5^2}>\frac{1}{5.6}\)
\(\frac{1}{6^2}>\frac{1}{6.7}\)
\(..............\)
\(\frac{1}{100^2}>\frac{1}{100.101}\)
\(\Rightarrow A=\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)
\(\Rightarrow A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)
\(\Rightarrow A>\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{96}{576}=\frac{1}{6}\left(1\right)\)
Lại có :
\(\frac{1}{5^2}< \frac{1}{4.5}\)
\(\frac{1}{6^2}< \frac{1}{5.6}\)
\(...............\)
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow A=\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(\Rightarrow A< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< \frac{1}{4}-\frac{1}{100}< \frac{1}{4}\left(2\right)\)
Từ (1) và (2) => Điều phải chứng minh
\(-4\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{6}\right)\le x\le-\frac{2}{3}.\left(\frac{1}{3}-\frac{1}{2}-\frac{3}{4}\right)\)
\(\Rightarrow-\frac{13}{3}.\left(\frac{3}{6}-\frac{1}{6}\right)\le x\le-\frac{2}{3}.\left(\frac{4}{12}-\frac{6}{12}-\frac{9}{12}\right)\)
\(\Rightarrow-\frac{13}{3}.\frac{2}{6}\le x\le-\frac{2}{3}.\frac{-11}{12}\)
\(\Rightarrow\frac{-13}{9}\le x\le\frac{11}{18}\)
\(\Rightarrow\frac{-26}{18}\le x\le\frac{11}{18}\)
=> -1,44444444444........... ≤ x ≤ 0,6111111111...........
Mà x ∈ Z
=> x ∈ { -1 ; 0 }
ta có:
\(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}\)
\(\Rightarrow B< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)
\(\Rightarrow B< \frac{1}{1}-\frac{1}{9}< 1\)
vậy B < 1
Đặt \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{7\cdot8}\)
\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)
...
\(\frac{1}{8^2}< \frac{1}{7\cdot8}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\)
\(A=1-\frac{1}{8}< 1\)
\(B< A< 1\left(đpcm\right)\)
\(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{9^2}\)
\(=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{9.9}\)
\(N\)bé hơn \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{8.9}=N_1\)
\(N_1=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{8.9}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.........-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}\)
\(=\frac{8}{9}\) \((1)\)
\(N\)lớn hơn \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{9.10}=N_2\)
\(\Rightarrow N_2=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-.....-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}\)
\(=\frac{5}{10}-\frac{1}{10}=\frac{2}{5}\) \((2)\)
Từ \((1)\)và \((2)\)suy ra ; \(\frac{2}{5}\)bé hơn N bé hơn \(\frac{8}{9}\)
Học tốt
Nhớ kết bạn với mình
Đặt \(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\) ta có :
\(A=\frac{1}{\left(2.2\right)^2}+\frac{1}{\left(2.3\right)^2}+\frac{1}{\left(2.4\right)^2}+...+\frac{1}{\left(2n\right)^2}\)
\(A=\frac{1}{2^2.2^2}+\frac{1}{2^2.3^2}+\frac{1}{2^2.4^2}+...+\frac{1}{2^2.n^2}\)
\(A=\frac{1}{2^2}.\frac{1}{2^2}+\frac{1}{2^2}.\frac{1}{3^2}+\frac{1}{2^2}.\frac{1}{4^2}+...+\frac{1}{2^2}.\frac{1}{n^2}\)
\(A=\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)
\(A< \frac{1}{2^2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\right)\)
\(A< \frac{1}{2^2}\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)
\(A< \frac{1}{2^2}\left(1-\frac{1}{n}\right)< \frac{1}{2^2}.1\)
\(A< \frac{1}{2^2}=\frac{1}{4}\)
Vậy \(A< \frac{1}{4}\)
Chúc bạn học tốt ~
\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{4}\)
\(=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{2\cdot4}+\frac{1}{4\cdot6}+\frac{1}{6\cdot8}+...+\frac{1}{\left(2n-2\right)\cdot2n}\)
\(=\left(\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{\left(2n-2\right)\cdot2n}\right)\cdot\frac{1}{2}\)
\(=\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{12}+...+\frac{1}{2n-2}-\frac{1}{2n}\right)\cdot\frac{1}{2}\)
\(=\left(\frac{1}{2}-\frac{1}{2n}\right)\cdot\frac{1}{2}=\frac{1}{4}-\frac{1}{2n\cdot2}< 1\)
\(\Rightarrow\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{4}\left(đpcm\right)\)