Tìm giá trị nhỏ nhất của N=
\(\left(x-1\right)\times\left(x-3\right)+11\) giúp mình đi,mình đang rất cần
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
N=x^2-3x-x+3+11=x^2-4x+4+10=(x-2)^2+10
\(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+10\ge10\Rightarrow N_{min}=10\)
Đẳng thức khi x=2
ta có:(x-1)(x-3)+11
(x-1) lớn hơn hoặc bằng 1
---->x=1 ----->(x-1)(x-3)=0
0+11=11 --->x=1,(x-1)(x-3)+11 = 11
sau 3 phút có kết quả tuy bạn http://olm.vn/hoi-dap/question/772291.html
ĐK \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)
a, \(R=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\frac{3x-6\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)
b. \(R< -1\Rightarrow R+1< 0\Rightarrow\frac{3\sqrt{x}-9+\sqrt{x}+3}{\sqrt{x}+3}< 0\Rightarrow\frac{4\sqrt{x}-6}{\sqrt{x}+3}< 0\)
\(\Rightarrow0\le x< \frac{9}{4}\)
c. \(R=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}=3+\frac{-18}{\sqrt{x}+3}\)
Ta thấy \(\sqrt{x}+3\ge3\Rightarrow\frac{-18}{\sqrt{x}+3}\ge-6\Rightarrow3+\frac{-18}{\sqrt{x}+3}\ge-3\Rightarrow R\ge-3\)
Vậy \(MinR=-3\Leftrightarrow x=0\)
\(\left(x-3\right)^2+\left(y-1\right)^2+5\)
ta có \(\hept{\begin{cases}\left(x-3\right)^2\ge0x\varepsilon r\\\left(y-1\right)^2\ge0y\varepsilon r\end{cases}}\)
=>\(\left(x-3\right)^2+\left(y-1\right)^2+5\ge5\) với mọi x.y \(\varepsilon\) R
=>biểu thức đạt giá trij lớn nhất là 5 tại
\(\hept{\begin{cases}\left(x-3\right)^2=0\\\left(y-1\right)^2=0\end{cases}=>\hept{\begin{cases}x=3\\y=2\end{cases}}}\)
Để biểu thức đạt nhỏ nhất thì (2x-3)4 đạt nhỏ nhất.
Lại có: (2x-3)4=[(2x-3)2]2 >=0
=> giá trị nhỏ nhất của nó là =0
=> giá trị nhỏ nhất là: -2
Đạt được khi x=3/2
giá trị nhỏ nhất của N là 11.
k mình nha
Ta có :
\(\left(x-1\right)\left(x-3\right)+11\)
\(=\left[\left(x-2\right)+1\right]\left[\left(x-2\right)-1\right]+11\)
\(=\left(x-2\right)^2-1^2+11\)
\(=\left(x-2\right)^2+10\ge0+10=10\)
\(\Rightarrow Min_N=10\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy ...