cho tam giác ABC có AB<AC, phân giác AM . Trên tia AC lấy điểm N sao cho AN=AB. Gọi K là giao điểm của các đường thẳng AB và MN. C/M rằng
a) MB=MN
b) tam giác MBK= tam giác MNC
c) AM vuông góc với KC và BN//KC
d) AC-AB>MC-MB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2:
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
bài 2:
ta có: AB <AC <BC (Vì 3cm <4cm <5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
HT mik làm giống bạn Dương Mạnh Quyết
Bài 1:
a: Xét ΔABC có \(AC^2=AB^2+BC^2\)
nên ΔABC vuông tại B
b: XétΔABC có BC<AB<AC
nên \(\widehat{A}< \widehat{C}< \widehat{B}\)
Bài 3:
a: Xét ΔABD và ΔACD có
AB=AC
AD chung
BD=CD
Do đó: ΔABD=ΔACD
b: Ta có: ΔABD=ΔACD
nên \(\widehat{BAD}=\widehat{CAD}\)
c: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là đường cao
Câu 17: Cho ABC có AB = AC và = 2 có dạng đặc biệt nào:
A. Tam giác cân B. Tam giác đều
C. Tam giác vuông D. Tam giác vuông cân
Câu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:
A. 7cm B. 12,5cm C. 5cm D.
Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại:
A. Đỉnh A B. Đỉnh B C. Đỉnh C D. Tất cả đều sai
Câu 20: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Khẳng định nào sau đây sai?
A. ABM = ACM B. ABM= AMC
C. AMB= AMC= 900 D. AM là tia phân giác CBA
Câu 22: Cho ABC= DEF. Khi đó: .
A. BC = DF B. AC = DF
C. AB = DF D. góc A = góc E
Câu 23. Cho PQR= DEF, DF =5cm. Khi đó:
A. PQ =5cm B. QR= 5cm C. PR= 5cm D.FE= 5cm
Xét tam giác ABC và tam giác AED có
\(\hept{\begin{cases}A:gócchung\\\frac{AE}{AB}=\frac{AD}{AC}\left(\frac{8}{20}=\frac{6}{15}\right)\end{cases}}\)
Vậy tam giác ABC đồng dạng với tam giác AED (c-g-c)
easy :>
Ta có : \(\frac{AE}{AB}=\frac{6}{15}=\frac{2}{5} ;\frac{ AD}{AC}=\frac{8}{20}=\frac{2}{5}\)
\(\Rightarrow\frac{AE}{AB}=\frac{AB}{AC}\)
Xét 2 tam giác : ADE và ACB có :
\(\widehat{A}\)chung
\(\frac{AE}{AB}=\frac{AB}{AC}\)
\(\Rightarrow\Delta ADE~\Delta ACB\left(TH2\right)\)
A) tam giác AMB và tam giác AMN có: AN=AB; A1=A2. ÂM chứng => tam giác AMB=tam giác AMN(c.g.c)=> MB=MN ( 2 cạnh tương ứng)
b) tam giác AMB=tam giác AMN (cmt)=> góc ABM=góc ANM.
góc ABM+góc MBK=180 độ; góc ANM+góc MNC=180
=> góc MBK=góc MNC
tam giác MBK và tam giác MNC: góc MBK=góc MNC(cmt); MB=MN(cmt); góc BMK=góc NMC(đối đỉnh)=> 2 tam giác = nhau (g.c.g)
c)tam giác MBK = tam giác MNC=> BK=NC
AK=AB+Bk; AC=AN+NC. mà AB=AN; BK=NC
=> AK=AC => tam giác AKC cân tại A. AM là phân giác => đồng thời là đường cao => AM vuông góc KC.
tam giác ABN cân tại A(AB=AN) => AM là phân giác đồng thời là đường cao => AM vuông góc BN
=> KC//BN( cùng vuông góc với AM)
d) AB=AN=> AC-AB=AC-AN=NC(1)
tam giác MBK = tam giác MNC=> MB=MN
=> MC-MB=MC-MN
áp dụng bất đẳng thức tam giác ta có: NC+MN>MC <=> NC>MC-MN
hay AC-AB>MC-MB
mình làm bài này vừa phải kẻ hình lại còn dài nữa, nhớ L I K E nha. haizz
Xét \(\Delta\)ABM và \(\Delta\)AMN có :
AM chung
Góc A1= góc A2 ( gt )
AB=AN ( gt)
=>\(\Delta\)ABM=\(\Delta\)AMN ( c.g.c)
=> BM=MN
b . Ta có : góc ABM + góc MBK = 1800( vì kề bù )
Tương tự : góc ANM + góc MNC = 1800
Mà : góc ABM = góc AMN ( vì \(\Delta\)ABM = \(\Delta\)AMN )
=> góc MBK = góc MNC
Xét \(\Delta\)MBK và\(\Delta\)MNC có :
góc MBK = góc MNC ( CMT)
BM=CM ( theo câu a )
Góc M1= góc M2 ( đối đỉnh )
=> \(\Delta\)MBK = \(\Delta\)MNC ( g.c.g)
Bạn kí hiệu A1,A2,M1,M2 giùm mình nhé !!