Tính Y=(1-1/2^2).(1-1/3^2).(1-1/4^2).(1-1/5^2)...(1-1/2006^2).(1-1/2007^2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot......\cdot\left(1-\frac{1}{20}\right)\)
\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot......\cdot\frac{19}{20}\)
\(A=\frac{1.2.3.....19}{2.3........20}\)
\(A=\frac{1}{20}\)
\(\frac{M}{N}=\frac{\frac{1}{2007}+\frac{2}{2006}+......+\frac{2006}{2}+\frac{2007}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.......+\frac{1}{2006}+\frac{1}{2007}}\)
\(\frac{M}{N}=\frac{\frac{1}{2007}+1+\frac{2}{2006}+1+.......+\frac{2007}{1}+1+\frac{2008}{2008}-2008}{\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}+.....+\frac{1}{2}}\)
\(\frac{M}{N}=\frac{\frac{2008}{2007}+\frac{2008}{2006}+....+\frac{2008}{1}+\frac{2008}{2008}-2008}{\frac{1}{2008}+........+\frac{1}{2}}\)
đến đây là ra rùi ha
\(M:N=\frac{\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}}\)
Ta có tử số bằng: 2008+2007/2+2006/3+2005/4+…..+2/2007+1/2008
(Phân tích 2008 thành 2008 con số 1 rồi đưa vào các nhóm)
= (1 + 2007/2) + (1 + 2006/3) + (1 + 2005/4) +... + (1 + 2/2007) + ( 1 + 1/2008) + (1)
= 2009/2 + 2009/3 + 2009//4 + ……. + 2009/2007 + 2009/2008 + 2009/2009
= 2009 x (1/2 + 1/3 + 1/4 + ... + 1/2007 + 1/2008 + 1/2009)
Mẫu số: 1/2 + 1/3 + 1/4 + ... + 1/2007 + 1/2008 + 1/2009
\(\Rightarrow M:N=\frac{2009.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}}=2009\)
A=2008+2007/2+2006/3+2005/4+...+2/2007+1/2008
1/2+1/3+1/4+1/5+...+1/2007+1/2008
=(1+2007/2)+(1+2006/3)+(1+2005/4)+...+(1+2/2007)+(1+1/2008)
1/2+1/3+1/4+...+1/2008
=2009(1/2+1/3+1/4+...+1/2008)
1/2+1/3+1/4+..+1/2008
=2009
Ta có : \(Y=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right).....\left(1-\dfrac{1}{2006^2}\right)\left(1-\dfrac{1}{2007^2}\right)\)
\(\Rightarrow Y=\dfrac{3}{4}.\dfrac{8}{9}.....\dfrac{2006^2-1}{2006^2}.\dfrac{2007^2-1}{2007^2}\)
\(\Rightarrow Y=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.....\dfrac{2006.2008}{2007.2007}=\dfrac{\left(1.2.....2006\right).\left(3.4.....2008\right)}{\left(2.3.....2007\right)\left(2.3.....2007\right)}=\dfrac{1.2018}{2007.2}=\dfrac{2018}{4014}\)
\(Y=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)...\left(1-\dfrac{1}{2007^2}\right)\)
\(=\dfrac{2^2-1}{2^2}.\dfrac{3^2-1}{3^2}.....\dfrac{2007^2-1}{2007^2}\)
\(=\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.....\dfrac{2006.2008}{2007^2}\)
\(=\dfrac{\left(1.3\right).\left(2.4\right).....\left(2006.2008\right)}{2^2.3^2.....2007^2}\)
\(=\dfrac{\left(1.2.3.....2006\right).\left(3.4.5.....2008\right)}{\left(2.3.4.....2007\right).\left(2.3.4.....2007\right)}\)
\(=\dfrac{1.2008}{2007.2}=\dfrac{1004}{2007}\)