Tìm các số dạng ab sao cho 3.ab và 4.ab+1 đều là số chính phương
GIÚP MK NHA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(I\right)\hept{\begin{cases}2\cdot\overline{ab}+1=p^2\left(1\right)\\3\cdot\overline{ab}+1=q^2\left(2\right)\end{cases}}\)
Từ (1) p lẻ => 2*ab = (p-1)(p+1) mà p+1 và p-1 chẵn (vì p lẻ) => ab chẵn => b chẵn. (*)
ab chẵn => 3*ab + 1 lẻ ; => q lẻ => q có dạng 4k + 1 => ab chia hết cho 4 (**) . (tính chất: Không có số chính phương nào có dạng 4k+3).
b = 0 mà ab chia hết cho 4 thì ab chỉ có thể là: 40 và 80. Thay vào (I) ta có:
\(\left(I\right)\hept{\begin{cases}2\cdot40+1=81=9^2\left(TM\right)\\3\cdot40+1=121=11^2\left(TM\right)\end{cases}}\)\(\left(I\right)\hept{\begin{cases}2\cdot80+1=161\left(koTM\right)\\...\end{cases}}\)
Vậy , ab duy nhất bằng 40.
bạn đinh thùy linh có thể giải thích cho mình p và q nghĩa là sao không
ta có 4ab+1 là số lẻ => 4ab+1 là scp lẻ chia 8 dư 1
mà\(10\le ab\le99\)\(\Rightarrow40\le4ab\le396\Rightarrow41\le4ab+1\le397\)
=> 4ab+1 có thể = 49;81;121;169;225;289;361
Xét bảng
Vậy ab = 13
con thieu 3ab+1 cung la scp nua ma bn