toan hinh lop 7
Bài 2 : Một cái cây đang mọc thẳng thì bị bão làm gãy phần ngọn. Người ta đo được phần ngọn bị gãy dài 1,75 m và phần thân còn lại dài 3m. Hỏi trước khi bị gãy, cây cao bao nhiêu mét?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phần gãy dài \(\sqrt{6^2+8^2}=10(m)\)
Vậy cây cao \(10+6=16(m)\)
gọi k/c từ điểm gãy đến ngọn cây là x . Vì cây cau vuông góc với mặt đất nên cây cau gãy tạo với mặt đất hình tam giác vuông =>khoảng cách từ gốc đến điểm gãy và k/c từ ngọn cây đến góc là cạnh góc vuông và x là cạnh huyền Định Lí PTG ta có : 3^2+4^2=x^2 =>x=5 => chiều cao cây = 5+4=9m
Gọi tam giác tại bởi phần thân cây bị gãy với phần cây còn lại và mặt đất là △ ABC vuông tại A. Ta có
cos 20 = 7.5 / cạnh huyền
⇒ cạnh huyền = \(\dfrac{7,5}{cos20}\)\(\approx\) 8 ( m )
Áp dụng định lý Py-ta-go ta có:
phần bị gãy của cây cau là : \(\sqrt{8^2-7,5^2}\) = 2.78 ( m )
⇒ Chiều cao cây cau lúc đầu là : 8 + 2.78 =10.78 ( m )
trước khi bị gẫy cây cao số mét là
1,75 + 3 = 4,75 (m)
đs...
Khi chưa bị gãy cây cao :
1,75 + 3 = 4,75 ( m )
Đáp số : 4,75 m