Cho tam giác MNP có MN=MP, gọi I là trung điểm của NP.
a/ trên cạnh MP, MN lần lượt lấy điểm E,F sao cho ME=MF. Chứng minh: NE=PF.
b/ Gọi H là giao điểm của NE và PF. Chứng minh: M,H,I thẳng hàng.
c/ Chứng minh EF//NP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn vẽ hình vào nhé
a) Xét tg DEM có ME=DE( gt)
DI = IE( gt)
=> DI là dg tb tg DEM => DI//MD; DI =1/2 MD
Xét tg DEN có DF=FN(gt)
DI = IE(gt)
=> FI là dg tb tg DEN=> FI//EN ; FI=1/2EN
Mà NE = MP(gt)=> 1/2NE=1/2MP=>DI =FI=> tg DFI cân tại I
Bạn sửa lại b thành I nhé( trong đề bài ý)
b) Ta có : ID// MD( ID là dg tb tg DEM)
=> IDN=DME. (1)
Ta có FI// EN( FI là dg tb tg DEN)=> IFD=FDN(slt)
Mà IDF+FDN= IDN. (2)
Ta lại có IFD=IDF( tg DIF cân tại I) (3)
=> Từ (1) (2) (3) suy ra MNP= 2 IDF
a)xét tam giác(tg) mne và tg mpd có
mn=mp(gt)
me=md(_)
m góc chung
=>tg mne = tg mpd
b)có md+dn+180(2 góc kề bù)
me+ep=180(_________)
mà md=me=>dn=ep
vì tg mne= tg mpd(cma)=>dnk=kpe(2 góc t/ư)
và men=ndp(2 góc t/ư)mà men+pen=mdp+ndp=180(kề bù) và men=ndp=>pen=mdp
xét tg dkn và tg ekp có
ndk=kpe(cmt)
dn=ep(cmt)
pen=mdp(cmt)
=>tgdkn=tg ekp
a) Xét MNE và MPD:
MN=MP(giả thiết)
góc NMP chung
ME=MD(giả thiết)
=> tam giác MNE=MPD(c.g.c)
b) Do tam giác MNE=MPD=> góc MNE= MPD và góc MEN=MDP (1)
=> góc NDP=NEP (cùng bù với 2 góc bằng nhau)
do MN=MP và MD=ME => ND=EP (2)
từ (1) và (2) => tam giác DKN=EKP (g.c.g)