K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2019

ukm tối mik làm cho giờ mik đag bận

a: Sửa đề: Trên tia OD lấy K, trên tia OB lấy E sao cho BE=DK

Xét tứ giác AKCE có

O là trung điểm chung của AC và KE

nên AKCE là hình bình hành

b: Để AKCE là hình thoi thì AC vuông góc với EK

=>AC vuông góc với BD

a) Xét tứ giác BIEM có 

\(\widehat{IBM}\) và \(\widehat{IEM}\) là hai góc đối

\(\widehat{IBM}+\widehat{IEM}=180^0\)(\(90^0+90^0=180^0\))

Do đó: BIEM là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

⇔B,I,E,M cùng thuộc 1 đường tròn(đpcm)

b) Ta có: ABCD là hình vuông(gt)

nên BD là tia phân giác của \(\widehat{ABC}\)(Định lí hình vuông)

⇔BE là tia phân giác của \(\widehat{ABC}\)

\(\widehat{ABD}=\dfrac{\widehat{ABC}}{2}=\dfrac{90^0}{2}=45^0\)

hay \(\widehat{IBE}=45^0\)

Ta có: BIEM là tứ giác nội tiếp(cmt)

nên \(\widehat{IBE}=\widehat{IME}\)(Định lí)

mà \(\widehat{IBE}=45^0\)(cmt)

nên \(\widehat{IME}=45^0\)

Vậy: \(\widehat{IME}=45^0\)