Cho Parabol (P): y = -2x2 và đường thẳng (d): y = x - m (m là tham số)
Tìm tất cả các giá trị tham số m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thoả mãn điều kiện
x1 + x2 = x1x2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm d và (P):
\(-2x^2=x-m\Leftrightarrow2x^2+x-m=0\) (1)
(d) cắt (P) tại 2 điểm pb khi (1) có 2 nghiệm pb
\(\Leftrightarrow\Delta=1+8m>0\Leftrightarrow m< -\dfrac{1}{8}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{1}{2}\\x_1x_2=-\dfrac{m}{2}\end{matrix}\right.\)
\(x_1+x_2=x_1x_2\Leftrightarrow-\dfrac{1}{2}=-\dfrac{m}{2}\Leftrightarrow m=1\)
Hoành độ giao điểm tm pt
\(x^2-mx+3=0\)
\(\Delta=m^2-4.3=m^2-12\)
Để pt có 2 nghiệm pb khi m^2 - 12 > 0
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=3\end{matrix}\right.\)
Ta có \(\left(x_1+x_2\right)^2-2x_1x_2-2\left|x_1x_2\right|=4\)
Thay vào ta được \(m^2-6-2.3=4\Leftrightarrow m^2-16=0\Leftrightarrow m=4;m=-4\)(tm)
PTHĐGĐ là;
x^2-6x+m-3=0
Δ=(-6)^2-4(m-3)=36-4m+12=-4m+48
Để PT có hai nghiệm phân biệt thì -4m+48>0
=>m<12
(x1-1)(x2^2-x2(x1+x2-1)+x1x2-1)=2
=>(x1-1)(-x1x2+x2+x1x2-1)=2
=>x1x2-(x1+x2)+1=2
=>m-3-6+1=2
=>m-8=2
=>m=10
a) \(A\in\left(d\right)\Rightarrow9=-3m+1-m^2\)
\(\Leftrightarrow m^2+3m+8=0\) \(\Leftrightarrow\left(m+\dfrac{3}{2}\right)^2+\dfrac{23}{4}=0\)(vn)
Vậy không tồn tại m để (d) đi qua A(-1;9)
b) Xét pt hoành độ gđ của (P) và (d) có:
\(2x^2=3mx+1-m^2\)
\(\Leftrightarrow2x^2-3mx-1+m^2=0\)
\(\Delta=9m^2-4.2\left(-1+m^2\right)=m^2+8>0\) với mọi m
=> Pt luôn có hai nghiệm pb => (d) luôn cắt (P) tại hai điểm pb
Theo viet:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{3m}{2}\\x_1x_2=\dfrac{m^2-1}{2}\end{matrix}\right.\)
\(x_1+x_2=2x_1x_2\)
\(\Leftrightarrow\dfrac{3m}{2}=2.\dfrac{m^2-1}{2}\) \(\Leftrightarrow2m^2-3m-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy...
PTHĐGĐ là;
x^2-3x-m^2+1=0
Δ=(-3)^2-4(-m^2+1)=4m^2-4+9=4m^2+5>0
=>Phương trình luôn có hai nghiệm phân biệt
TH1: x1>0; x2>0
=>x1+2x2=3
mà x1+x2=3
nên x1=1; x2=1
x1*x2=-m^2+1
=>-m^2+1=1
=>m=0
TH2: x1<0; x2>0
=>-x1+2x2=3 và x1+x2=3
=>x1=1; x2=2
x1*x2=-m^2+1
=>-m^2+1=2
=>-m^2-1=0(loại)
TH2: x1>0; x2<0
=>x1-2x2=0 va x1+x2=3
=>x1=2 và x2=1
x1*x2=-m^2+1
=>-m^2+1=2
=>-m^2=1(loại)
TH3: x1<0; x2<0
=>-x1-2x2=3 và x1+x2=3
=>x1=9 và x2=-6
x1*x2=-m^2+1
=>-m^2+1=-54
=>-m^2=-55
=>\(m=\pm\sqrt{55}\)
a) Đường thẳng (d) đi qua A(1; 0) => x = 1 và y = 0
DO đó: 0 = m - 3 <=> m = 3
b) pt hoành độ giao điểm giữa (P) và (d) là:
x2 = mx - 3 <=> x2 - mx + 3 = 0 (1)
\(\Delta\)= (-m)2 - 3.4 = m2 - 12
Để (P) cắt (d) tại 2 điểm pb <=> pt (1) có 2 nghiệm pb
<=> \(\Delta\)> 0 <=> m2 - 12 > 0 <=> \(\orbr{\begin{cases}m>2\sqrt{3}\\m< -2\sqrt{3}\end{cases}}\)
Theo hệ thức viet, ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=3\end{cases}}\)
Theo bài ra, ta có: |x1 - x2| = 2
<=> x12 - 2x1x2 + x22 = 4
<=> (x1 + x2)2 - 4x1x2 = 4
<=> m2 - 4.3 = 4
<=> m2 - 16 = 0
<=> (m - 4)(m + 4) = 0
<=> \(\orbr{\begin{cases}m=4\\m=-4\end{cases}}\)(tm)
Phương trình hoành độ giao điểm:
\(x^2+2ax+4a=0\)
\(\Delta'=a^2-4a>0\Rightarrow\left[{}\begin{matrix}a>4\\a< 0\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2a\\x_1x_2=4a\end{matrix}\right.\)
\(\left|x_1\right|+\left|x_2\right|=3\Leftrightarrow x_1^2+x_2^2+2\left|x_1x_2\right|=9\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=9\)
\(\Leftrightarrow4a^2-8a+\left|8a\right|-9=0\)
TH1: \(a>4\Rightarrow4a^2-8a+8a-9=0\Rightarrow\left[{}\begin{matrix}a=\dfrac{3}{2}\left(loại\right)\\a=-\dfrac{3}{2}\left(loại\right)\end{matrix}\right.\)
TH2: \(a< 0\Rightarrow4a^2-16a-9=0\Rightarrow\left[{}\begin{matrix}a=\dfrac{9}{2}\left(loại\right)\\a=-\dfrac{1}{2}\end{matrix}\right.\)
Phương trình hoành độ giao điểm:
\(-2x^2=x-m\Leftrightarrow2x^2+x-m=0\) (1)
(d) cắt (P) tại 2 điểm pb khi (1) có 2 nghiệm pb
\(\Leftrightarrow\Delta=1+8m>0\Rightarrow m>-\dfrac{1}{8}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{1}{2}\\x_1x_2=-\dfrac{m}{2}\end{matrix}\right.\)
\(x_1+x_2=x_1x_2\Leftrightarrow-\dfrac{1}{2}=-\dfrac{m}{2}\)
\(\Rightarrow m=1\) (thỏa mãn)