cho a là số tự nhiên lẻ , b là số tự nhiên . CMR : các số a và a . b + 4 nguyên tố cùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d = ƯCLN(A; A.B + 4) (d thuộc N*)
=> A chia hết cho d; A.B + 4 chia hết cho d
=> A.B chia hết cho d; A.B + 4 chia hết cho d
=> (A.B + 4) - (A.B) chia hết cho d
=> A.B + 4 - A.B chia hết cho d
=> 4 chia hết cho d
=> \(d\in\left\{1;2;4\right\}\)
Mà A lẻ => d lẻ => d = 1
=> ƯCLN(A; A.B + 4) = 1
=> A và A.B + 4 là 2 số nguyên tố cùng nhau (đpcm)
Cho a là số tự nhiên lẻ ,b là một số tự nhiên . Chứng minh rằng các số a và ab+4 nguyên tố cùng nhau
Giả sử a và ab + 4 cùng chia hết cho số tự nhiên d ( d khác 0 )
Như vậy thì ab chia hết cho d , do đó hiệu ( ab + 4 ) - ab = 4 cũng chia hết cho d
=> d = { 1 ; 2 ; 4 }
Nhưng đầu bài đã nói a là 1 số tự nhiên lẻ => a và ab + 4 là các số nguyên tố cùng nhau
Gọi k là ước số của a và ab+4
Do a lẻ => k lẻ
Ta có:
ab+4=kp (1)
a=kq (2)
Thay (2) vào (1)
=> kqb+4 =kp
=> k(p-qb)=4
=> p-qb =4/k
do p-qb nguyên => k là ước lẻ của 4 => k=1
Vậy a và ab+4 nguyên tố cùng nhau
Gọi d là ước số của a và ab+4
=> a, ab và (ab+4) chia hết cho d
=>(ab+4)-ab chia hết cho d
hay 4 chia hết cho d
=> d=1, 2, 4.
Do a là số lẻ mà a chia hết cho d nên d phải lẻ
=> d=1
Vậy a và (ab+4) là 2 số nguyên tố cùng nhau
k thể cm