Tính giá trị biểu thức
B=(-1)-2+(-3)-4+.......+(-49)-50
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = ( -1 ) + 2 + ( -3 ) + 4 + ... + ( -49 ) + 50
=> B = [ 2 + ( -1 ) ] + [ ( -3 ) + 4 ] + ... + [ ( -49 ) + 50 ] ( 25 cặp số )
=> B = 1 + 1 + ... + 1
=> B = 1 x 25
=> B = 25
Vậy B = 25
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+....+\frac{1}{1+2+3+...+49+50}\)
\(=\frac{1}{\frac{2.\left(2+1\right)}{2}}+\frac{1}{\frac{3.\left(3+1\right)}{2}}+\frac{1}{\frac{4.\left(4+1\right)}{2}}+.....+\frac{1}{\frac{50\left(50+1\right)}{2}}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+....+\frac{2}{50.51}\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{50}-\frac{1}{51}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{51}\right)=\frac{49}{51}\)
\(C=\left(1-2-3-4\right)+...+\left(197-198-199-200\right)\)
=-8x25=-200
\(D=-\left(11+13+...+99\right)+\left(10+12+...+98\right)\)
=(-1)+(-1)+...+(-1)
=-1x45=-45
Ta có:
\(x^2-2018x+1=0\)
\(\Leftrightarrow x^2+1=2018x\)
Do đó
\(B=\frac{x^4+x^2+1}{x^2}=\frac{\left(x^4+2x^2+1\right)-x^2}{x^2}=\frac{\left(x^2+1\right)^2-x^2}{x^2}=\frac{\left(x^2+x+1\right)\left(x^2-x+1\right)}{x^2}\)
\(\Leftrightarrow B=\frac{\left(2018x+x\right)\left(2018x-x\right)}{x^2}=\frac{2019x\cdot2017x}{x^2}=2019\cdot2017\)
B = ( -1 ) - 2 + ( - 3 ) - 4 + ... + ( - 49 ) - 50 Có 50 số hạng
B = ( - 3 ) +( - 7 ) + .... + ( - 99 ) có 50 : 2 = 25 số hạng
Tổng B là [( - 99 ) + ( - 3 ) ] x 25 : 2 = ( - 1275 )
Vậy B = -1275