K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2016

Có vẻ đề thiếu.

22 tháng 12 2016

Thiếu x+y+z= 1.. Xl  có lẽ mk nhìn nhầm

16 tháng 12 2016

\(\frac{x+y}{z}=\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y+y+z+x+z}{z+x+y}=\frac{2\left(x+y+z\right)}{x+y+z}=2\) Tính chất tỷ lệ thức cứ nhó và cho vào thôi

\(\frac{x+y}{z}=2\Rightarrow\left(x+y\right)=2z\Rightarrow K=2\)vậy thôi

30 tháng 6 2017

2.  ĐK:  \(x\ge-5\)

\(\Leftrightarrow\left(x+5-6\sqrt{x+5}+9\right)+\left(x^2-8x+16\right)=0\)

\(\Leftrightarrow\left(\sqrt{x+5}-3\right)^2+\left(x-4\right)^2=0\)

\(\forall x\ge-5\)  ta luôn có  \(\left(\sqrt{x+5}-3\right)^2+\left(x-4\right)^2\ge0\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}\sqrt{x+5}-3=0\\x-4=0\end{cases}}\)  \(\Leftrightarrow\)  x = 4 (nhận)

30 tháng 6 2017

Muốn câu nào ? ^^ Mình giải cho ........><

12 tháng 12 2018

\(A=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\).Áp dụng BĐT Cauchy-Schwarz,ta có:

\(=\left(1-\frac{1}{x+1}\right)+\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)

\(=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)

Dấu "=" xảy ra khi x = y = z = 1/3

Vậy A min = 3/4 khi x=y=z=1/3

12 tháng 12 2018

Bỏ chữ "Áp dụng bđt Cauchy-Schwarz,ta có:"giùm mình,nãy đánh nhầm ở bài làm trước mà quên xóa đi!

31 tháng 5 2018

Ta có: \(P=\frac{4}{x}+\frac{9}{y}+\frac{16}{z}=\frac{2^2}{x}+\frac{3^2}{y}+\frac{4^2}{z}\)

Áp dụng bất đẳng thức Swarchz cho 3 số:

\(\Rightarrow P\ge\frac{\left(2+3+4\right)^2}{x+y+z}=\frac{81}{x+y+z}\)

Thay \(x+y+z=6\Rightarrow P\ge\frac{81}{6}=\frac{27}{2}\)

\(\Rightarrow Min_P=\frac{27}{2}.\)Dấu "=" xảy ra khi \(x=y=z=2\).

31 tháng 5 2018

Dấu " = " xảy ra \(\Leftrightarrow x=\frac{4}{3};y=2;z=\frac{8}{3}\)

21 tháng 11 2015

Áp dụng bất đẳng thức Cosi, ta có: 
1/x + 36x ≥ 2.√(1/x . 36x) = 12 (đẳng thức xảy ra khi 1/x = 36x hay x = 1/6) (1)
4/y + 36y ≥ 24 (đẳng thức xảy ra khi 4/y = 36y hay y = 1/3) (2)
9/z + 36z ≥ 36 (đẳng thức xảy ra khi 9/z = 36z hay z = 1/2) (3)
Cộng vế 3 bất đẳng thức (1),(2),(3) lại được: 
1/x + 4/y + 9/z + 36(x + y + z) ≥ 12+24+36=72
<=> 1/x + 4/y + 9/z ≥ 72 - 36(x + y + z) = 36 (vì x + y + z = 1) 
Vậy GTNN S = 36 khi x = 1/6; y = 1/3; z = 1/2

Đúng thì tick nhé !

17 tháng 11 2017

mk ko bt

AH
Akai Haruma
Giáo viên
17 tháng 1 2017

Lời giải:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left [\frac{9}{1-(xy+yz+xz)}+\frac{1}{4xyz}\right]\left [1-(xy+yz+xz)+9xyz\right ]\geq (3+\frac{3}{2})^2=\frac{81}{4}\)

\(\Rightarrow P\geq \frac{81}{4[1-(xy+yz+xz)+9xyz]}\) $(1)$

Áp dụng BĐT Am-Gm: \(xy+yz+xz=(x+y+z)(xy+yz+xz)\geq 9xyz\)

\(\Rightarrow 1-(xy+yz+xz)+9xyz\leq 1\) $(2)$

Từ \((1),(2)\Rightarrow P\geq \frac{81}{4}\)

Vậy \(P_{\min}=\frac{81}{4}\Leftrightarrow (x,y,z)=\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)\)