K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2022

A=7−x2−3x=−(x2+3x+94)+374=−(x+32)2+374do:−(x+32)2≤0=>−(x+32)2+374≤374=>A≤3

Dấu = xảy ra khi


x+32=0=>x=−3

vậy A max =\(\dfrac{37}{4}\)
374 đạt được khi
 

19 tháng 8 2022

:>

 

NV
23 tháng 4 2022

ĐKXĐ: \(\dfrac{3}{2}\le x\le3\)

\(A=\sqrt{2x-3}+\sqrt{6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\)

\(A\ge\sqrt{2x-3+6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\ge\sqrt{3}\)

\(A_{min}=\sqrt{3}\) khi \(3-x=0\Rightarrow x=3\)

\(A=1.\sqrt{2x-3}+\sqrt{2}.\sqrt{6-2x}\le\sqrt{\left(1+2\right)\left(2x-3+6-2x\right)}=3\)

\(A_{max}=3\) khi \(2x-3=\dfrac{6-2x}{2}\Rightarrow x=2\)

24 tháng 4 2022

-Em cảm ơn thầy nhiều ạ! 

10 tháng 10 2020

Bài 1:

Ta có: \(2x+\left|x-3\right|=4\)

\(\Leftrightarrow\left|x-3\right|=4-2x\)

Điều kiện: \(4-2x\ge0\Leftrightarrow2x\le4\Rightarrow x\le2\)

\(PT\Leftrightarrow\orbr{\begin{cases}x-3=4x-2\\x-3=2-4x\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x=-1\\5x=5\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{3}\left(ktm\right)\\x=1\left(tm\right)\end{cases}}\)

Vậy x = 1

10 tháng 10 2020

Bài 2:

a) Ta có: \(A=\left|3x+5\right|+4\ge4\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left|3x+5\right|=0\Rightarrow x=-\frac{5}{3}\)

Vậy Min(A) = 4 khi x = -5/3

b) Ta có: \(B=-\left|2x+1\right|+10\le10\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left|2x+1\right|=0\Rightarrow x=-\frac{1}{2}\)

Vậy Max(B) = 10 khi x = -1/2

7 tháng 8 2016

Ta có ; \(A=\frac{3x^2-2x-1}{\left(x+1\right)^2}\) .Đặt \(y=x+1\Rightarrow x=y-1\), thay vào A :

\(A=\frac{3\left(y-1\right)^2-2\left(y-1\right)-1}{y^2}=\frac{3y^2-8y+4}{y^2}=\frac{4}{y^2}-\frac{8}{y}+3\)

Lại đặt \(t=\frac{1}{y}\)\(A=4t^2-8t+3=4\left(t^2-2t+1\right)-1=4\left(t-1\right)^2-1\ge-1\)

Dấu "=" xảy ra khi và chỉ khi t = 1 <=> y = 1 <=> x = 0

Vậy A đạt giá trị nhỏ nhất bằng -1 khi x = 0 

9 tháng 9 2019

a) \(2\left(x+5\right)-3x=2x+1\)

\(\left(x+2\right)+\left(x-2x+1\right)\ge0\)

\(=\left(x+2\right)+\left(x-2+1\right)-3\ge-1\)

b)

  Bài này ta sử dụng kĩ thuật tham số hóa.

  Giả sử A đạt GTNN tại a= x, b= y, c= z khi đó x + y  +z = 3.            (1)

  Áp dụng bất đẳng thức Cauchy cho 2 số dương ta có:

       a2+x2≥2axa2+x2≥2ax.          4a2≥8ax−4x24a2≥8ax−4x2.

       b2+y2≥2byb2+y2≥2by. =>    6b2≥12by−6y26b2≥12by−6y2.

       c2+z2≥2zc2+z2≥2z.           3c2≥6cz−3z23c2≥6cz−3z2.

 => A≥(8ax+12by+6cz)−(4x+6y+3z)A≥(8ax+12by+6cz)−(4x+6y+3z).

  Để sử dụng được GT thì 8x = 12y = 6z.                                          (2)

  Từ (1); (2) ta tìm ra được x, y, z=>...

c,d chịu 

\(x=-1\)

NV
26 tháng 7 2021

1.

Đặt \(x-2=t\ne0\Rightarrow x=t+2\)

\(B=\dfrac{4\left(t+2\right)^2-6\left(t+2\right)+1}{t^2}=\dfrac{4t^2+10t+5}{t^2}=\dfrac{5}{t^2}+\dfrac{2}{t}+4=5\left(\dfrac{1}{t}+\dfrac{1}{5}\right)^2+\dfrac{19}{5}\ge\dfrac{19}{5}\)

\(B_{min}=\dfrac{19}{5}\) khi \(t=-5\) hay \(x=-3\)

2.

Đặt \(x-1=t\ne0\Rightarrow x=t+1\)

\(C=\dfrac{\left(t+1\right)^2+4\left(t+1\right)-14}{t^2}=\dfrac{t^2+6t-9}{t^2}=-\dfrac{9}{t^2}+\dfrac{6}{t}+1=-\left(\dfrac{3}{t}-1\right)^2+2\le2\)

\(C_{max}=2\) khi \(t=3\) hay \(x=4\)

30 tháng 7 2017

giúp vs

30 tháng 7 2017

mấy bài nầy dễ thôi. chỉ cần áp dụng các hằng đẳng thức là đc!

20 tháng 3 2016

Bạn làm nhiều bài tập rồi quen dần với mấy dạng này ,chứ chỉ ra cách nào thì khó lắm 

Thường thì biến đổi về. Dạng bình phương (cũng có những cách khác nhé)

Ví du:tim giá trị nhỏ nhất của:x^2+2x+2=(x+1)^2+1 lớn hơn hoặc bằng 1 với mọi x thuộc R

20 tháng 3 2016

an may tinh la ra

7 tháng 6 2017

\(3x^2-6x+1\)

\(=3\left(x^2-2x+\frac{1}{3}\right)\)

\(=3\left(x-1\right)^2-\frac{2}{3}\)

vì \(3\left(x-2\right)^2\ge0\)nên \(3\left(x-1\right)^2-\frac{2}{3}\ge\frac{2}{3}\)

vậy GTNN của biểu thức =2/3

minh tống ơi chắc là sai đấy

7 tháng 6 2017

sai cũng đc cảm ơn bạn nhiều lắm

3 tháng 5 2023

Mình nghĩ ra câu C rồi bạn nào giúp mình nghĩ nốt câu A,B hộ mình nhé mình cảm ơn!

a:6x-5-9x^2

=-(9x^2-6x+5)

=-(9x^2-6x+1+4)

=-(3x-1)^2-4<=-4

=>A>=2/-4=-1/2

Dấu = xảy ra khi x=1/3

b: \(B=\dfrac{4x^2-6x+4-1}{2x^2-3x+2}=2-\dfrac{1}{2x^2-3x+2}\)

2x^2-3x+2=2(x^2-3/2x+1)

=2(x^2-2*x*3/4+9/16+7/16)

=2(x-3/4)^2+7/8>=7/8

=>-1/2x^2-3x+2<=-1:7/8=-8/7

=>B<=-8/7+2=6/7

Dâu = xảy ra khi x=3/4