K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 4 2021

(C) là đường tròn tâm \(I\left(2;-3\right)\) bán kính \(R=5\)

\(\overrightarrow{DI}=\left(1;-4\right)\Rightarrow ID=\sqrt{17}< R\Rightarrow\) D là 1 điểm thuộc miền trong đường tròn

Gọi H là hình chiếu vuông góc của I lên \(\Delta\Rightarrow\) H là trung điểm AB

Theo định lý Pitago: \(AH^2=IA^2-IH^2=R^2-IH^2\Leftrightarrow\dfrac{1}{4}AB^2=25-IH^2\)

\(\Rightarrow AB\) đạt min khi và chỉ khi IH đạt max

Mặt khác trong tam giác vuông IDH, theo định lý đường xiên-đường vuông góc ta luôn có:

\(IH\le ID\Rightarrow IH_{max}=ID\) khi H trùng D \(\Leftrightarrow\Delta\perp ID\)

\(\Rightarrow\) đường thẳng \(\Delta\) nhận (1;-4) là 1 vtpt

Phương trình \(\Delta\):

\(1\left(x-1\right)-4\left(y-1\right)=0\Leftrightarrow x-4y+3=0\)

\(\Rightarrow\left\{{}\begin{matrix}b=-4\\c=3\end{matrix}\right.\)

29 tháng 12 2019

Chọn đáp án C

Mặt cầu (S) có tâm I(4;3;3) và bán kính R = 4. Gọi I’ là hình chiếu của I trên mặt phẳng α .

Đường thẳng I I ' đi qua I(4;3;3) và nhận n = ⇀ 1 ; 1 ; 1 làm vectơ chỉ phương nên có phương trình là:

 

Tọa độ điểm I’ thỏa mãn hệ

 

⇔ t = - 2 . Suy ra I’(2;1;1).

Gọi hình tròn (C) bán kính r là thiết diện của khối cầu (S) khi cắt bởi mặt phẳng  α . Khi đó I’ là tâm của đường tròn (C).

Ta có I M = 14 < 4 = R  và M ∈ α  nên điểm M thuộc miền trong của đường tròn (C) (M nằm trong hình trong hình tròn).

Do đường thẳng d ⊂ α , d đi qua M và d cắt mặt cầu tại hai điểm A, B nên d cắt đường tròn (C) tại hai điểm A, B.

Phương tích của điểm M với đường tròn (C): M A . M B = r 2 - I ' M 2 .

Do r không đổi nên r 2 - I ' M 2 không đổi ⇒ M A . M B  không đổi.

Lại có

Dấu “=” xảy ra khi MA = MB hay A B ⊥ M I ' .

Mà  A B ⊥ M I ' nên đường thẳng AB có một vectơ chỉ phương là   u ⇀ = I I ' ; ⇀ M I ' ⇀ = 2 ; - 4 ; 2 (cùng phương với vectơ u 2 ⇀ )

23 tháng 6 2018

Đáp án C

 

có tâm I(4;3;3) bán kính R =4

Gọi phương trình đường thẳng d có dạng  

Khoảng cách từ tâm I đến d là  

Ta có  

 

Khi đó

1 tháng 2 2017

Đường tròn \((C)\) tâm \(I(a;b)\) bán kính \(R\)có phương trình

\((x-a)^2+(y-b)^2=R^2.\)

\(∆MAB ⊥ M\) \(\rightarrow \) \(AB\) là đường kính suy ra \(∆\) qua \(I\) do đó:

\(a-b+1=0 (1)\)

Hạ \(MH⊥AB\)\(MH=d(M, ∆)= \dfrac{|2-1+1|}{\sqrt{2}}={\sqrt{2}} \)

\(S_{ΔMAB}=\dfrac{1}{2}MH×AB \Leftrightarrow 2=\dfrac{1}{2}2R\sqrt{2} \)

\(\Rightarrow R = \sqrt{2} \)

Vì đường tròn qua\(M\) nên (\(2-a)^2+(1-b)^2=2 (2)\)

Ta có hệ : 

\(\begin{cases} a-b+1=0\\ (2-a)^2+(1-b)^2=0 \end{cases} \)

Giải hệ \(PT\) ta được: \(a=1;b=2\).

\(\rightarrow \)Vậy \((C) \)có  phương trình:\((x-1)^2+(y-2)^2=2\)

 

19 tháng 6 2021

\(\left(C\right):x^2+y^2+4x-6y-12=0\)

\(\Leftrightarrow\left(C\right):\left(x+2\right)^2+\left(y-3\right)^2=25\)

\(\Rightarrow I=\left(-2;3\right)\) là tâm đường tròn, bán kính \(R=5\)

Kẻ IH vuông góc với AB.

\(\Rightarrow IH=\sqrt{R^2-AH^2}=\sqrt{5^2-\dfrac{1}{4}.50}=\dfrac{5\sqrt{2}}{2}\)

Đường thẳng AB có dạng: \(ax+by-2a=0\left(a^2+b^2\ne0\right)\)

Ta có: \(d\left(I;AB\right)=\dfrac{\left|-2a+3b-2a\right|}{\sqrt{a^2+b^2}}=\dfrac{5\sqrt{2}}{2}\)

\(\Leftrightarrow7a^2-48ab-7b^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=7b\\b=-7a\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}AB:7x+y-14=0\\AB:x-7y-2=0\end{matrix}\right.\)

15 tháng 5 2019

10 tháng 8 2019

Chọn đáp án B.