K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2020

a) Gọi H là giao của PN và BC, I là giao của MP và BC

Ta có \(\frac{AN}{AC}+\frac{NC}{AC}=1\left(1\right)\)

Mặt khác áp dụng định lý Talet ta có:

\(\frac{NC}{AC}=\frac{CH}{BC}=\frac{CI+CH}{BC}=\frac{CI}{BC}+\frac{CH}{BC}\left(2\right)\)

Vì MI//AC nên \(\frac{CI}{BC}=\frac{AM}{AB}\left(3\right)\)

Vì \(\Delta\)ABC đồng dạng với \(\Delta\)PHI (gg)

=> \(\frac{IH}{BC}=\frac{PH}{AB}\)mà \(\frac{PH}{AB}=\frac{PQ}{AQ}\left(4\right)\)

Từ (1)(2)(3)(4) => \(\frac{AN}{AC}+\frac{NC}{AC}=....=\frac{AM}{AB}+\frac{AN}{AC}+\frac{PQ}{AQ}=1\left(đpcm\right)\)

b) Từ câu (a) ta có:

\(\frac{AM\cdot AN\cdot PQ}{AB\cdot AC\cdot AQ}=\frac{CI\cdot AN\cdot IH}{BC\cdot AC\cdot BC}=\frac{CI\cdot BH\cdot IH}{BC\cdot BC\cdot BC}=\frac{1}{27}\)

=> \(CI\cdot BH\cdot IH=\frac{BC^3}{27}\)

Mặt khác áp dụng BĐT Cosi cho 3 số không âm ta có:

\(CI\cdot BH\cdot IH\le\frac{\left(CI+IH+HB\right)^3}{3^3}=\frac{1}{27}\)

30 tháng 4 2020

A B C H Q I P M N

Gọi H = PN ∩ BC; I = MP ∩ BC

a, Ta có: \(\frac{AN}{AC}+\frac{NC}{AC}=1\left(1\right)\)

Mặt khác, áp dụng định lý Ta-lét, ta có:

\(\frac{NC}{AC}=\frac{CH}{BC}=\frac{CI+HI}{BC}=\frac{CI}{BC}+\frac{HI}{BC}\left(2\right)\)

Vì MI//AC nên \(\frac{CI}{BC}=\frac{AM}{AB}\left(3\right)\)

Vì ΔABC đồng dạng với ΔPHI (g.g)

=> \(\frac{HI}{BC}=\frac{PH}{AB}\) mà \(\frac{PH}{AB}=\frac{PQ}{AB}\)

nên \(\frac{HI}{BC}=\frac{PQ}{AB}\left(4\right)\)

Từ (1), (2), (3), (4) suy ra: 

\(\frac{AN}{AC}+\frac{NC}{AC}=\frac{AN}{AC}+\frac{CI}{BC}+\frac{HI}{BC}\)

\(=\frac{AN}{AC}+\frac{AM}{AB}+\frac{PQ}{AQ}=1\left(đpcm\right)\)

b, Từ câu a ta có:  

\(\frac{AM.AN.PQ}{AB.AC.AQ}=\frac{CI.AN.IH}{BC.AC.BC}=\frac{CI.BH.IH}{BC.BC.BC}=\frac{1}{27}\)

\(\Leftrightarrow CI.BH.IH=\frac{1}{27}.BC^3\)

Áp dụng BĐT Cô-si cho 3 số không âm, ta có:

\(CI.BH.IH\le\frac{\left(CI+BH+IH\right)^3}{3^3}=\frac{1}{27}.BC^3\)

Dấu "=" xảy ra <=> CI = BH = IH

<=> Q là trung điểm của BC và AP\(=\frac{2}{3}AQ\)

19 tháng 1 2020

a) Kéo dài MP, NP lần lượt cắt BC tại E, D. 

Xét tam giác ABC có ME // AC \(\Rightarrow\)\(\frac{AM}{AB}\)\(\frac{CE}{BC}\)(1)

Xét tam giác ABC có ND // AB \(\Rightarrow\)\(\frac{AN}{AC}\)\(\frac{BD}{BC}\)(2)

Xét tam giác ABQ có PD//AB \(\Rightarrow\frac{PQ}{AQ}=\frac{DQ}{BQ}\)

Xét tam giấc ACQ có PE//AC\(\Rightarrow\frac{PQ}{AQ}=\frac{QE}{QC}\)

\(\Rightarrow\frac{PQ}{AQ}=\frac{DQ}{BQ}=\frac{QE}{QC}=\frac{DQ+QE}{BQ+QC}=\frac{DE}{BC}\)(3)

Từ (1), (2), (3) suy ra \(\frac{AM}{AB}+\frac{AN}{AC}+\frac{PQ}{AQ}=\frac{CE}{BC}+\frac{DB}{BC}+\frac{DE}{BC}=1\)(đpcm)