Tìm tất cả các số tự nhiên n để (5n + 11 ) chia hết cho (n + 1). Ai biết giải ko giúp tớ với ^^ Giải dễ hỉu tớ tick cho =))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 5n+11 chia hết cho n+1
=> 5n+5+6 chia hết cho n+1
=> 5.(n+1)+6 chia hết cho n+1
Mà 5.(n+1) chia hết cho n+1
=> 6 chia hết cho n+1
=> n+1 \(\in\)Ư(6)={1; 2; 3; 6}
=> n \(\in\){0; 1; 2; 5}.
5n + 11 chia hết cho n+1
5n+11 = 5(n+1)+6 chia hết cho n+1
Ta có : 5(n+1)+6 chia hết cho n + 1
6 chia hết cho n+1
Suy ra n+1 thuộc ƯC(6)={1;2;3;6}
n+1=1 suy ra n=0
n+1=2 suy ra n=1
n+1=3 suy ra n=2
n+1=6 suy ra n=6
n thuộc {0;1;2;5}
Ta có:5n+11 chia hết cho n+1
(5n+5)+6 chia hết cho n+1
5(n+1)+6 chia hết cho n+1
Vì 5(n+1)chia hết cho n+1 =>6 chia hết cho n+1
=>n+1 thuộc U(6)={1;2;3;6}
n+1 1 2 3 6
n 0 1 2 5
Vậy với n thuộc{0;1;2;5} thì 5n+11 chia hết cho n+1
ta có:5n + 14 chia hết cho n + 2
=>5(n + 2)+4 chia hết cho n + 2
=>4 chia hết cho n + 2
=>n+2 thuộc ước của 4={1;-1;2;-2;4;-4}
=>n ={-1;-3;0;-4;2;-6}
BL
Ta có 5n+16=5n+10+6
Vì 5n+16\(⋮\)n+2
=>5n+10+6\(⋮\)n+2
=>6\(⋮\)n+2 Vì 5n+10 \(⋮\) n+2
=>\(n+2\inƯ\left(6\right)\)
mà Ư(6)={-1;1;-2;2;-3;3;-6;6}
Ta có bảng
n+2 | -1 | 1 | -2 | 2 | -3 | 3 | -6 | 6 |
n | -3 | -1 | -4 | 0 | -5 | 1 | -8 | 4 |
vậy .........
5n+11 chia hết (n+1)
=>5n+5+6 chia hết (n+1)
=>5(n+1)+6 chia hết cho (n+1)
vì (n+1) chia hết cho (n+1)=> 5(n+1) chia hết cho (n+1)
do vậy để 5(n+1)+6 chia hết cho (n+1) thì 6 phải chia hết cho (n+1)
=> (n+1) phải là ước của 6
U(6)={-6,-3,-2,-1,1,2,3,6}
=> n={-7,-4,-3,-2,0,1,2,5}
Vì n tự nhiện=> n={0,1,2,5}
5n+11 chia hết cho n+1
Mà n+1 chia hết cho n+1
=>(5n+11)-5(n+1)
=>5n+11-(5n+5)
=>6 chia hết cho n+1
=>n+1 thuộc Ư(6)
=>n+1 thuộc{1,2,3,6}
=>n thuộc {0,1,2,5}