Hãy tìm x,y thuộc N biết rằng x< y và y<5<x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ƯCLN\left(x;y\right)=\frac{xy}{BCNN\left(x;y\right)}=\frac{20}{10}=2\)
Đặt \(x=2k,y=2t\) (y và t là 2 số nguyên tố cùng nhau)
\(xy=20\Rightarrow2k.2t=20\Rightarrow k.t=5\)
\(\Rightarrow k\inƯ\left(5\right)=\left\{1;5\right\}\)
\(\Rightarrow x=2k\in\left\{2;10\right\}\)
Nếu x = 2 thì y = 10
Nếu x = 10 thì y = 2
Vậy x = 2 và y = 10 hoặc x = 10 và y = 2
Theo đề ra ta có: \(\frac{3+x}{7+y}=\frac{3}{7}\)và x + y =20
<=> \(\frac{3.a}{7.a}=\frac{3+x}{7+y}=\frac{3}{7}\)(a \(\in\)N)
x=20:(3+7)x3=6
y=20:(3+7)x7=21
Vậy x=6; y=21
Mình thấy câu trả lời trên olm.vn con nhiều hơn câu hỏi nua á