K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2021

undefined

9 tháng 4 2021

`P=n^3-n^2+n-1`

`=n^2(n-1)+(n-1)`

`=(n-1)(n^2+1)`

Vì n là stn thì p là snt khi

`n-1=1=>n=2`

Vậy n=2

7 tháng 7 2021

A = \((2n)^{3} - 3n + 1 \)

\(\Leftrightarrow\) A = \((2n)^{3} - 2n - n + 1\)

\(\Leftrightarrow\) A = \(2n (n^{2} - 1) - ( n-1)\)

\(\Leftrightarrow\) A = \(2n(n - 1)(n+1)-(n-1)\)

\(\Leftrightarrow\) A = \((2n^{2} +2n-1)(n-1)\)

Vì A là số nguyên tố nên n - 1 = 1

\(\Rightarrow\) n = 2

 

giúp e vs .e đang cần gấp

26 tháng 3 2017

Để \(\left(n-1\right)\left(n^2+2n+3\right)\) là số nguyên tố <=> \(n-1=1\) hoặc \(n^2+2n+3=1\)

TH1 : \(n-1=1\Rightarrow n=2\)

\(\Rightarrow\left(n-1\right)\left(n^2+2n+3\right)=\left(2-1\right)\left(2^2+2.2+3\right)=11\)là số nguyên tố (TM)

TH2 : \(n^2+2n+3=1\)

\(\Leftrightarrow\left(n^2+2n+1\right)+2=1\Leftrightarrow\left(n+1\right)^2+2=1\Rightarrow\left(n+1\right)^2=-1\) (loại vì \(\left(n+1\right)^2\ge0\) )

Vậy n = 2 thì \(\left(n-1\right)\left(n^2+2n+3\right)\)là số nguyên tố 

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

Lời giải:
Từ đề bài, kết hợp với $2n+1> n-1$ ta có các TH sau đây:

TH1: 

$2n+1=3; n-1=p$

$\Rightarrow n=1; n-1=p\Rightarrow p=0$ (vô lý)

TH2: $2n+1=p, n-1=3\Rightarrow p=9$ (loại)

TH3: $2n+1=3p; n-1=1$

$\Rightarrow 3p=5$ (loại)

Vậy không tồn tại $n,p$ thỏa đề.