tìm tất cả các số nguyên x, y thỏa mãn
\(\left(x+y+1\right)\left(xy+x+y\right)=5+2\left(x+y\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+y+1\right)\left(xy+x+y\right)=5+2\left(x+y\right)\)
\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y\right)=3+2\left(x+y+1\right)\)
\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y-2\right)=3\)
Từ đây bạn xét các trường hợp và giải ra nghiệm.
\(\left(x^2-x+1\right)\left(xy+y^2\right)=3x-1\left(1\right)\)
\(3x-1⋮x^2-x+1\)
zì \(lim\left(x\rightarrow\infty\right)\frac{3x-1}{x^2-x+1}=0\)
zà thấy x=2 thỏa mãn ,=> x=1
thay zô 1 ta có
\(1\left(y+y^2\right)=2=>y^2+y-2=0=>\orbr{\begin{cases}y=1\\y=-2\end{cases}}\)
zậy \(\left(x,y\right)\in\left\{\left(1,1\right)\left(1,-2\right)\right\}\)
Câu hỏi của Minh Nguyễn Cao - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo nhé!
\(f\left(x^5+y^5+y\right)=x^3f\left(x^2\right)+y^3f\left(y^2\right)+f\left(y\right)\)
Sửa lại đề câu 2 !!
Khai triển: \(\left(x+y\right)^2+\left(xy-1\right)\left(x+y\right)+\left(xy-5\right)=0\).
Ta coi như là một phương trình bậc hai ẩn \(x+y\).
\(\Delta=\left(xy-1\right)^2-4\left(xy-5\right)=\left(xy-3\right)^2+12\)
Để phương trình có nghiệm nguyên thì \(\Delta\) chính phương, cộng với \(\left(xy-3\right)^2\) đã là một số chính phương.
Nghĩa là ta cần tìm 2 số chính phương hơn kém nhau 12 đơn vị. Đó là số 4 và 16.
Tức là \(\left(xy-3\right)^2=4\) (số chính phương nhỏ hơn)
Hay \(xy=5\) hoặc \(xy=1\).
Thử lại thì \(x=y=1\) hoặc \(x=y=-1\)