cho 3 so duong a,b,c biet 0_<a_<b_<c_<1 chung minh (a/bc+1)+(b/ac+1)+(c/bc+1)_<2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ab=c => a=c/b (1)
bc=4a => a=(bc)/4 (2)
Từ (1) và (2) => c/b = (bc)/4
<=> 1/b = b/4 <=> b^2 =4 <=> b = 2 hoặc b = -2
(*) Với b=2 thì
(1) => a=c/2 <=> c=2a
ta có: ac=9b nên 2a^2 = 18 <=> a^2 = 9 <=> a=3 hoặc a=-3
_ với a=3 thì c= 2*3 = 6 (thỏa)
_với a=-3 thì c= 2*-3 =-6 (thỏa)
(*) Với b=-2 thì
(1) => a=c/-2 <=> c=-2a
ta có: ac=9b nên -2a^2 = -18 <=> a^2 = 9 <=> a=3 hoặc a=-3
_ với a=3 thì c= -2*3 = -6 (thỏa)
_với a=-3 thì c= -2*-3 =6 (thỏa)
= { (3;2;6) ; (-3;2;-6) ; (3;-2;-6) ; (-3;-2;6) }
đây là những gì mình nghĩ. nếu có sai bạn báo cho mình nha!
\(a+b+c=1\\ \Rightarrow\left(a+b+c\right)^2=1\\ \left(a+b+c\right)^2\ge4a\left(b+c\right)\\ \Rightarrow1\ge4a\left(b+c\right)\\ \Rightarrow b+c\ge4a\left(b+c\right)^2\ge16abc\)
Áp dụng \(\left(x+y\right)^2\ge4xy\)
1 = (a + b+ c)^2 >= 4a(b + c)
<=> b +c >= 4a(b + c)^2
Mà (b + c)^2 >= 4bc
Vậy b + c >= 4a.4bc = 16abc
Trước tiên cần chứng minh với mọi m,n,p thuộc R và x,y,z>0 ta có
m^2/x +n^2/y +p^2/z >=(a+b+c)^2/x+y+z (1)
Dấu "=" xảy ra <=>m/x=n/y=p/z
Thật vậy m,n thuộc R,x,y>0 ta có
m^2/x+n^2/y >=(m+n)^2/x+y (2)
<=> (m^2y +n^2x)(x+y) >= xy(m+n)^2
sau đó khai triển ra ta được (nx-my)^2 >=0 (đúng)
Dấu "="xảy ra <=>m/x=n/y
Áp dụng BĐT (2) ta có
m^2/x +n^2/y +p^2/z >=(m+n)^2/x+y +p^2/z >= (m+n+p)^2/x+y+z
Dấu "=" xảy ra <=> m/x=n/y=p/z
Áp dụng BĐT (1) ta có
Q=a^2/a+b b^2/b+c c^2/c+a >= (a+b+c)^2/2(a+b+c)=3 (do a+b+c=6)
Dấu "=" xảy ra <=> a=b=c=2