K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2016

1. Thay m = 2 vào phương trình (1) ta có.

            2x2 + 3x + 1 = 0 

Có ( a - b + c = 2 - 3 + 1 = 0)

=> Phương trình (1) có nghiệm x1 = -1 ; x2  = - 1/2

2. Phương trình (1) có   = (2m -1)2 - 8(m -1)

                                         = 4m2 - 12m + 9 = (2m - 3)2 \(\ge\) 0 với mọi m.

=> Phương trình (1) luôn có hai nghiệm x1; x2 với mọi giá trị của m.

+ Theo hệ thức Vi ét ta có 

\(\begin{cases}x_1+x_2=\frac{1-2m}{2}\\x_1x_2=\frac{m-1}{2}\end{cases}\) 

+ Theo điều kiện đề bài: 4x12  + 4x22  + 2x1x2 = 1

                           <=>  4(x1 + x2)2 - 6 x1x2 = 1     

                          <=>  ( 1 - 2m)2 - 3m + 3 = 1

                          <=>  4m2  - 7m + 3 = 0  

+ Có a + b + c = 0 => m1 = 1; m2 = 3/4 

Vậy với m = 1 hoặc m = 3/4 thì phương trình (1) có hai nghiệm x1; x2 thoả mãn:

4x12  + 4x22  + 2x1x2 = 1 

 

21 tháng 8 2016

hơi dư nhỉ?? để làm lại há

5 tháng 4 2021

1. Với m=5 thì (1) có dạng 

\(5x^2-5x-10=0\Leftrightarrow x^2-x-2=0\\ \Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

2. Nếu m=0 thì (1) trở thành

\(-5x-5=0\Leftrightarrow x=-1\)

Nếu m khác 0 , coi (1) là phương trình bậc 2 ẩn x, ta có:

\(\text{Δ}=\left(-5\right)^2-4\cdot m\cdot\left(-m-5\right)=4m^2+20m+25=\left(2m+5\right) ^2\ge0\)

Nên phương trình (1) luôn có nghiệm với mọi m 

NV
5 tháng 4 2021

a. Bạn tự giải

b.

Với \(m=0\) pt có nghiệm \(x=-1\) (thỏa mãn)

Với \(m\ne0\)

\(\Delta=25+4m\left(m+5\right)=4m^2+20m+25=\left(2m+5\right)^2\ge0\) ; \(\forall m\)

\(\Rightarrow\) Pt đã cho luôn có nghiệm với mọi m

15 tháng 3 2022

a, Thay vào ta được 

\(x^2-8x+10=0\)

\(\Delta'=16-10=6>0\)

Vậy pt luôn có 2 nghiệm pb \(x=4\pm\sqrt{6}\)

b, Ta có \(\Delta'=\left(m-1\right)^2-\left(m^2-3m\right)=-2m+1+3m=m+1\)

Để pt có 2 nghiệm khi m >= -1 

15 tháng 3 2022

a)Thay m=5 ta có:

\(x^2-2\left(5-1\right)x+5^2-15=0\\ =>x^2-8x+10=0\)

Công thức nghiệm của pt bâc 2 ta có: b2-4ac=(-8)2-40=24>0

=>Phương trình có 2 nghiệm phân biệt:

xong r tính ra x1 và x2 :v

a) Thay m=1 vào phương trình, ta được:

\(x^2-6\cdot x+5=0\)

a=1; b=-6; c=5

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{5}{1}=5\)

b) Ta có: \(x^2-\left(m+5\right)x-m+6=0\)

a=1; b=-m-5; c=-m+6

\(\Delta=b^2-4ac\)

\(=\left(-m-5\right)^2-4\cdot1\cdot\left(-m+6\right)\)

\(=\left(m+5\right)^2-4\left(-m+6\right)\)

\(=m^2+10m+25+4m-24\)

\(=m^2+14m+1\)

\(=m^2+14m+49-48\)

\(=\left(m+7\right)^2-48\)

Để phương trình có hai nghiệm phân biệt thì \(\left(m+7\right)^2\ge48\)

\(\Leftrightarrow\left[{}\begin{matrix}m+7\ge4\sqrt{3}\\m+7\le-4\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m\ge4\sqrt{3}-7\\m\le-4\sqrt{3}-7\end{matrix}\right.\)

Vì x1,x2 là hai nghiệm của phương trình (1) nên ta có:

\(\left\{{}\begin{matrix}x_1^2-\left(m+5\right)x_1-m+6=0\\x_2^2-\left(m+5\right)x_2-m+6=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1^2=\left(m+5\right)x_1+m-6\\x_2^2=\left(m+5\right)x_2+m-6\end{matrix}\right.\)

Ta có: \(x_1^2+x_1\cdot x_2^2=24\)

\(\Leftrightarrow\left(m+5\right)x_1+m-6+x_1\cdot\left[\left(m+5\right)x_2+m-6\right]=24\)

\(\Leftrightarrow\left(m+5\right)x_1+m-6+\left(m+5\right)\cdot x_1x_2+x_1\left(m-6\right)=24\)

Xin lỗi bạn, đến đây mình thua

6 tháng 7 2021

a, khi m=1

\(=>x^2-6x+5=0\)

\(=>a+b+c=0=>\left[{}\begin{matrix}x1=1\\x2=5\end{matrix}\right.\)

b,\(\Delta=\left[-\left(m+5\right)\right]^2-4\left(-m+6\right)=m^2+10m+25+4m-24\)

\(=m^2+14m+1=m^2+2.7m+49-48\)\(=\left(m+7\right)^2-48\)

pt (1) có nghiệm \(< =>\left(m+7\right)^2-48\ge0\)

\(< =>\left[{}\begin{matrix}m\ge-7+4\sqrt{3}\\m\le-7-4\sqrt{3}\end{matrix}\right.\)

theo vi ét \(=>\left\{{}\begin{matrix}x1+x2=m+5\\x1x2=-m+6\end{matrix}\right.\)

tui nghĩ là đề thế này \(x1^2x2+x1x2^2=24=>x1x2\left(x1+x2\right)=24\)

\(=>\left(6-m\right)\left(m+5\right)=24\)

\(< =>-m^2-5m+6m+30-24=0\)

\(< =>-m^2+m+6=0\)

\(\Delta=1^2-4\left(-1\right).6=25>0\)

\(=>\left[{}\begin{matrix}m1=\dfrac{-1+\sqrt{25}}{2\left(-1\right)}=-2\left(loai\right)\\m2=\dfrac{-1-\sqrt{25}}{2\left(-1\right)}=3\left(tm\right)\end{matrix}\right.\)

 

1 tháng 3 2020

1) Phương trình ban đầu tương đương :

\(\left(2021x-2020\right)^3=\left(2x-2\right)^3+\left(2019x-2018\right)^3\)

Đặt \(a=2x-2,b=2019x-2018\)

\(\Rightarrow a+b=2021x-2020\)

Khi đó phương trình có dạng :

\(\left(a+b\right)^3=a^3+b^3\)

\(\Leftrightarrow3ab\left(a+b\right)=0\)

\(\Leftrightarrow3\cdot\left(2x-2\right)\cdot\left(2019x-2018\right)\cdot\left(2021x-2002\right)=0\)

\(\Leftrightarrow\)Hoặc \(2x-2=0\) 

          Hoặc \(2019x-2018=0\)

          Hoặc \(2021x-2020=0\)

\(\Rightarrow x\in\left\{1,\frac{2018}{2019},\frac{2020}{2021}\right\}\) (thỏa mãn)

Vậy : phương trình đã cho có tập nghiệm \(S=\left\{1,\frac{2018}{2019},\frac{2020}{2021}\right\}\)

1 tháng 3 2020

\(x\left(2x-3\right)+x\left(x-m\right)=3x^2+x-m\)

\(\Leftrightarrow2x^2-3x+x^2-xm=3x^2+x-m\)

\(\Leftrightarrow-3x-xm=x-m\)

\(\Leftrightarrow4x+xm=m\Leftrightarrow x\left(4+m\right)=m\)

\(\Leftrightarrow x=\frac{m}{m+4}\)

Phương trình có nghiệm không âm \(\Leftrightarrow x\ge0\)

\(\Rightarrow\frac{m}{m+4}\ge0\)

Mà \(m+4>m\)nên \(\orbr{\begin{cases}m\ge0\\m+4\le0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m\ge0\\m\le-4\end{cases}}\)

13 tháng 6 2015

a) với m = 1 thay vào phương trình thì phương trình trở thành

\(\left(x+1\right)\left(x-1\right)-\left(x-2\right)^2=5\Leftrightarrow x^2-1-x^2+4x-4-5=0\Leftrightarrow4x-10=0\Leftrightarrow x=\frac{5}{2}\)b) phương trình nhận x = - 3 là nghiệm thì ta thay x = -3 vào phương trình sẽ thỏa mãn

thay x = -3 vào phưowng trình trở thành:

\(\left(-3m+1\right)\times\left(-4\right)-m\left(-3-2\right)^2=5\)

\(\Leftrightarrow12m-4-m\left(-5\right)^2=5\Leftrightarrow-13m=9\Leftrightarrow m=\frac{-9}{13}\)

Vậy với m = -9/13 thì phương trình có nghiệm x=-3

12 tháng 3 2017

thật đơn giản 

NV
13 tháng 1 2022

a. Bạn tự giải

b.

\(\Delta=\left(m+2\right)^2-8m=\left(m-2\right)^2\ge0\Rightarrow\) pt có 2 nghiệm pb khi \(m\ne2\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=2m\end{matrix}\right.\)

Do \(x_2\) là nghiệm của pt \(\Rightarrow x_2^2-\left(m+2\right)x_2+2m=0\Rightarrow x_2^2=\left(m+2\right)x_2-2m\)

Thế vào bài toán:

\(\left(m+2\right)x_1+\left(m+2\right)x_2-2m\le3\)

\(\Leftrightarrow\left(m+2\right)\left(x_1+x_2\right)-2m\le3\)

\(\Leftrightarrow\left(m+2\right)^2-2m\le3\)

\(\Leftrightarrow m^2+2m+1\le0\)

\(\Leftrightarrow\left(m+1\right)^2\le0\)

\(\Rightarrow m=-1\)

5 tháng 6 2021

cái o kia bị lỗi mọi người bỏ đi

\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)

\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx+m-2=0\)

\(\Leftrightarrow-2x+2mx-2=0\)

\(\Leftrightarrow2\left(mx-x-1\right)=0\)

\(\Leftrightarrow mx-x-1=0\)

\(\Leftrightarrow x\left(m-1\right)=1\)

\(\Leftrightarrow x=\frac{1}{m-1}\)

\(\Rightarrow x>0\Leftrightarrow\frac{1}{m-1}>0\Leftrightarrow m-1>0\Leftrightarrow m>1\)

Vậy \(m>1\)thì \(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)có nghiệm không âm