A là tập hợp các số nguyên dương x sao cho giá trị của biểu thức \(\frac{2\sqrt{x}+3}{\sqrt{x}-1}\)là số nguyên.
Các phần tử của tập hợp A là...?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk hôm qua ms hỏi bài này, h lm theo trí nhớ nè...
Đặt \(B=\frac{2\sqrt{x}+3}{\sqrt{x}-1}=\frac{2\sqrt{x}-2+5}{\sqrt{x}-1}=\frac{2\sqrt{x}-1+5}{\sqrt{x}-1}=\frac{2\sqrt{x}-1}{\sqrt{x}-1}+\frac{5}{\sqrt{x}-1}=2+\frac{5}{\sqrt{x}-1}\)
Mà \(2+\frac{5}{\sqrt{x}-1}\) là nguyên \(\Rightarrow\frac{5}{\sqrt{x}-1}\) là nguyên
\(\Rightarrow\sqrt{x}-1\inƯ\left(5\right)\)
\(\Rightarrow\sqrt{x}-1\in\left\{-5;-1;1;5\right\}\)
Mà \(\sqrt{x}-1\) là số nguyên
\(\Rightarrow\sqrt{x}-1\in\left\{1;5\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{2;6\right\}\)
\(\Rightarrow x\in\left\{4;36\right\}\)
Vậy tập hợp A có 2 phần tử
Đặt \(B=\frac{2\sqrt{x}+3}{\sqrt{x}-1}=\frac{2\sqrt{x}-2+5}{\sqrt{x}-1}=\frac{2\left(\sqrt{x}-1\right)+5}{\sqrt{x}-1}=2+\frac{5}{\sqrt{x}-1}\)
\(\Rightarrow B\in Z\Leftrightarrow2+\frac{5}{\sqrt{x}-1}\in Z\Leftrightarrow\frac{5}{\sqrt{x}-1}\in Z\Leftrightarrow5⋮\sqrt{x}-1\Leftrightarrow\sqrt{x}-1\inƯ\left(5\right)\)
\(\Rightarrow\sqrt{x}-1\in\left\{-5;-1;1;5\right\}\)
Vì x dương\(\Rightarrow\sqrt{x}-1\ge0\)
\(\Rightarrow\sqrt{x}-1\in\left\{1;5\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{2;6\right\}\)
\(\Rightarrow x\in\left\{4;36\right\}\)
Vậy số phần tử của tập hợp A là 2
\(\frac{x-1}{x+5}=\frac{6}{7}\Leftrightarrow\frac{x-1}{6}=\frac{x+5}{7}\)
\(\Leftrightarrow\frac{7\left(x-1\right)}{42}=\frac{6\left(x+5\right)}{42}\)
\(\Leftrightarrow7\left(x-1\right)=6\left(x+5\right)\)
\(\Leftrightarrow7x-7=6x+30\)
\(\Leftrightarrow7x-6x=7+30\)
\(\Leftrightarrow x=37\)
Vậy nghiệm của phương trình là x = 37
\(\Rightarrow\int^{25-x^2\ge0}_{25-x^2\ne9}\Leftrightarrow\int^{x^2\le25}_{x^2\ne16}\Leftrightarrow x^2\in\left\{0;1;4;9;25\right\}\Rightarrow x\in\left\{-5;-3;-2;-1;0;1;2;3;5\right\}\)
S có Số phần tử là : 7
Để \(\frac{7}{x^2-x+1}\) là số nguyên khi \(x^2-x+1\) là ước nguyên của 7
\(\RightarrowƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Mà \(x^2-x+1=\left(x^2-2\cdot\frac{1}{2}\cdot x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Nên \(x^2-x+1=1\) hoặc \(x^2-x+1=7\)
TH1 : \(x^2-x+1=1\Leftrightarrow x\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
TH2 : \(x^2-x+1=7\Leftrightarrow x^2-x-6=0\)
\(\Leftrightarrow\left(x^2-3x\right)+\left(2x-6\right)=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}}\)
Vậy \(C=\left\{-2;0;1;3\right\}\)
Ta phải có : \(\hept{\begin{cases}\sqrt{x-2}>0\\\sqrt{6-x}>0\end{cases}\Leftrightarrow2< x< 6}\)
Ta phải có ; \(\hept{\begin{cases}\sqrt{x-2}>0\\\text{A B C H a b M Nhấp chuột và kéo để di chuyển Mình giải thế này nhé :)) Gọi M là trung điểm của BC => AM là đường trung tuyến của tam giác ABC => Nhấp chuột và kéo để di chuyển(vì tam giác ABC vuông) Áp dụng hệ thức về cạnh trong tam giác vuông, ta có ; Nhấp chuột và kéo để di chuyển(1) Mặt khác, ta cũng có ; Nhấp chuột và kéo để di chuyển(2) Từ (1) và (2) suy ra được : Nhấp chuột và kéo để di chuyển(Đpcm)}\sqrt{6-x}>0\end{cases}\Rightarrow2< x< 6}\)