K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2016

\(A=\frac{x^2+4x+7}{x-3}=\frac{x\left(x-3\right)+3x+4x+7}{x-3}=\frac{x\left(x-3\right)+7\left(x-3\right)+21+7}{x-3}\)\(=\frac{\left(x-3\right)\left(x+7\right)+28}{x-3}=x+7+\frac{28}{x-3}\)

(x-3) phải thuộc ước của  28=[+-1,+-2,+,4,+-7,+-14,+-28}

x={-25,-11,-4,1,2,4,5,7,10,17,31} nhiêu quá

16 tháng 12 2016

cảm ơn bạn nhiều

29 tháng 8 2019

Bài 1 :

\(-8=\frac{-8}{1}=\frac{-16}{2}=\frac{-24}{3}=\frac{-32}{4}=\frac{-40}{5}\)

\(-2=\frac{-2}{1}=\frac{-4}{2}=\frac{-6}{3}=\frac{-8}{4}=\frac{-10}{5}\)

\(3=\frac{3}{1}=\frac{6}{2}=\frac{9}{3}=\frac{12}{4}=\frac{15}{5}\)

  

29 tháng 8 2019

Bài 2 :

 a)  Để A là phân số thì :

  \(n-6\ne0\Rightarrow n\ne6\)

b)\(A=\frac{4}{0-6}=\frac{4}{-6}\)

\(A=\frac{4}{7-6}=4\)

\(A=\frac{4}{-12-6}=\frac{-2}{9}\)

Bài 3 : [ Tương tự bài 2 ]

Bài 4 : [ Suy nghĩ thì ra ]

               [ Hoq chắc - có gì sai thông cảm ]

NV
6 tháng 1 2022

\(A=\dfrac{5x^2}{x^2}-\dfrac{x}{x^2}+\dfrac{1}{x^2}=\dfrac{1}{x^2}-\dfrac{1}{x}+5=\left(\dfrac{1}{x^2}-\dfrac{1}{x}+\dfrac{1}{4}\right)+\dfrac{19}{4}=\left(\dfrac{1}{x}-\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)

\(A_{min}=\dfrac{19}{4}\) khi \(\dfrac{1}{x}=\dfrac{1}{2}\Rightarrow x=2\)

26 tháng 4 2019

Ta có A=x - 3 - 5/x - 3

         A=x - 3/x - 3 - 5/x - 3

        A=1 - 5/x - 3

Đẻ A đạt giá trị nhỏ nhất<=>1 - 5/x - 3 cũng phải đạt giá trị nhỏ nhất

Mà 1>0=>để A đạt giá trị nhỏ nhất=>5/x - 3 phải lớn nhất nguyên dương

=>x - 3 phải là số bé nhất nguyên dương=1

Ta có:x - 3=1

        x=1+3=4

Để A đạt giá trị lớn nhất

=> X+2 lớn nhất

và |x| nhỏ nhất

Vì | x| > 0 mà x thuộc Z \(\Rightarrow\hept{\begin{cases}x=1\\x=-1\end{cases}}\)

Suy ra \(\hept{\begin{cases}th1:x=1\Rightarrow A=\frac{1+2}{\left|1\right|}=3\\th2:x=-1\Rightarrow A=\frac{-1+2}{\left|-1\right|}=1\end{cases}}\)

ta thấy: Th1: 1+2=3 > th2: -1+2=1 mà x+2 lớn nhất

vậy GTLN của A là 3 khi x =1

28 tháng 7 2021

A = \(\left(\dfrac{\sqrt{x}+1}{2\sqrt{x}-2}+\dfrac{3}{x-1}-\dfrac{\sqrt{x}+3}{2\sqrt{x}+2}\right)\cdot\dfrac{4x-4}{5}\) (ĐK: x \(\ge\) 0; x \(\ne\) 1)

A = \(\left(\dfrac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}+\dfrac{3}{x-1}-\dfrac{\sqrt{x}+3}{2\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{4\left(x-1\right)}{5}\)

A = \(\left(\dfrac{\left(\sqrt{x}+1\right)^2}{2\left(x-1\right)}+\dfrac{6}{2\left(x-1\right)}-\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{2\left(x-1\right)}\right)\cdot\dfrac{4\left(x-1\right)}{5}\)

A = \(\left(\dfrac{x+2\sqrt{x}+1+6-x-3\sqrt{x}+\sqrt{x}+3}{2\left(x-1\right)}\right)\cdot\dfrac{4\left(x-1\right)}{5}\)

A = \(\dfrac{10}{2\left(x-1\right)}\cdot\dfrac{4\left(x-1\right)}{5}\)

A = 4

Vậy A không phụ thuộc vào x

Chúc bn học tốt!

Ta có: \(A=\left(\dfrac{\sqrt{x}+1}{2\sqrt{x}-2}+\dfrac{3}{x-1}-\dfrac{\sqrt{x}+3}{2\sqrt{x}+2}\right)\cdot\dfrac{4x-4}{5}\)

\(=\dfrac{x+2\sqrt{x}+1+6-\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{4\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{5}\)

\(=\dfrac{x+2\sqrt{x}+7-x-2\sqrt{x}+3}{1}\cdot\dfrac{2}{5}\)

\(=10\cdot\dfrac{2}{5}=4\)