một chiếc xe khởi hành từ A đến B cách nhau 240km.1h sau,một chiếc xe thứ hai cũng khởi hành từ A đến B với vận tốc lớn hơn xe thứ nhất 10km/h nên đã đuổi kịp xe thứ nhất ở chính giữa quãng đường AB.tính vận tốc của mỗi xe
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
v: Vận tốc oto thứ nhất
t: Thời gian oto thứ nhất đi hết nữa đường
=>
120 = vt
=> t = \(\frac{120}{v}\)
120 = (v + 10)(t - 1)
=> 120 = (v + 10)(\(\frac{120}{v}\) - 1)
<=> 120 = 120 - v + \(\frac{1200}{v}\)- 10
<=> v - \(\frac{1200}{v}\)+ 10 = 0
<=> v2 + 10v - 1200 = 0
<=>
v = -40 (loại)
v = 30 km/h
=>
Vận tốc oto thứ nhất: 30km/h
Vận tốc oto thứ hai: 40km/h
Gọi vận tốc xe ô tô là x
=>Vận tốc xe ô tô 2 là +10
Sau 1h xe 1 đi được x(km)
Thời gian xe 2 đuổi kịp là x/10(h)
Theo đề, ta có:
x/10(x+10)=150-30=120
=>x=30
=>V1=30km/h; V2=40km/h
Gọi vận tốc ô tô thứ nhất là x (km/h;x>0)
=>vận tốc ô tô thứ 2 là x+10 (km/h)
Nửa quãng đường AB là 240:2=120 (km)
Thời gian ô tô thứ nhất đi hết nửa quãng đường AB là \(\frac{120}{x}\) (h)
Thời gian ô tô thứ hai đi hết nửa quãng đường AB là \(\frac{120}{x+10}\) (h)
Theo đề bài ta có phương trình:
\(\frac{120}{x}\) = 1+\(\frac{120}{x+10}\)
\(\Leftrightarrow\) \(\frac{120\left(x+10\right)}{x\left(x+10\right)}=\frac{x\left(x+10\right)}{x\left(x+10\right)}+\frac{120x}{x\left(x+10\right)}
\)
\(\Leftrightarrow120x+1200=x^2+10x+120x\)
\(\Leftrightarrow\) \(^{x^2+10x-1200=0}\)
\(\Leftrightarrow\)\(^{\text{}x^2-30x+40x-1200=0}\)
\(\Leftrightarrow\) \(\text{(x-30)(x+40)=0}\)
\(\Leftrightarrow\)\(\left[\begin{array}{}
x-30=0\\
x+40=0
\end{array} \right.\)\(\Leftrightarrow\)\(\left[\begin{array}{}
x=30 (TM)\\
x=-40=0 (loại)
\end{array} \right.\)
Vậy vận tốc ô tô thứ nhất là 30 km/h
Vận tốc ô tô thứ 2 là 30+10=40 km/h
Gọi vận tốc trung bình của xe thứ nhất là v (km/h; v > 10) thì vận tốc của xe thứ hai là v - 10 (km/h).
Theo bài ra ta có pt:
\(\dfrac{120}{v-10}-\dfrac{120}{v}=1\Leftrightarrow\dfrac{1200}{v\left(v-10\right)}=1\Leftrightarrow v^2-10v-1200=0\Leftrightarrow\left(v-40\right)\left(v+30\right)=0\Leftrightarrow v=40\) (Do v > 10)
Vậy vận tốc của xe thứ nhất là 40 km/h, của xe thứ hai là 30 km/h
Gọi vận tốc trung bình của xe thứ nhất là v (km/h; v > 10) thì vận tốc của xe thứ hai là v - 10 (km/h).
Theo bài ra ta có pt:\(\dfrac{120}{x-10}-\dfrac{120}{x}=1\\ \Leftrightarrow\dfrac{120x}{x\left(x-10\right)}-\dfrac{120\left(x-10\right)}{x\left(x-10\right)}=\dfrac{x\left(x-10\right)}{x\left(x-10\right)}\\ \Rightarrow120x-120x+1200=x^2-10x\\ \Leftrightarrow x^2-10x-1200=0\) (a=1;b=-10;c=-1200)
b'=-5
\(\Delta'=b'^2-ac=\left(-5\right)^2-1.\left(-1200\right)=1225\)
\(->x_1\dfrac{-b'+\sqrt{\Delta'}}{a}=\dfrac{-\left(-5\right)+\sqrt{1225}}{1}=40\left(t/m\right)\\ ->x_2=\dfrac{-b'-\sqrt{\Delta'}}{a}=\dfrac{-\left(-5\right)-\sqrt{1225}}{1}=-30\left(l\right)\)
Vậy vận tốc của xe thứ nhất là 40 km/h, của xe thứ hai là 30 km/h
Điểm chính giữa cách A quãng đường là: 240 : 2 = 120 km
Gọi vận tốc xe thứ nhất là x (km/h) (x > 0)
=> vận tốc xe thứ 2 là x + 10 (km/h)
Thời gian xe thứ nhất đi là: \(\frac{120}{x}\) (giờ)
Thời gian xe thứ 2 đi là: \(\frac{120}{x+10}\) (giờ)
Xe thứ 2 đi sau xe thứ nhất 1 giờ nên ta có phương trình:\(\frac{120}{x}\) - \(\frac{120}{x+10}\) = 1
<=> 120 (x + 10) - 120x = x(x + 10)
.................
KL:....