Cho x2-2y2=xy. Tinh gia tri cua bieu thuc M=\(\frac{x-y}{x+y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)
\(=\left(x+y\right)^3=1^3=1\)
Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)
\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)
Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)
\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)
\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)
\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)
\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)
Theo bài ra, ta có: \(x^2-y=y^2-x\Leftrightarrow x^2-y^2=-x+y\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=-\left(x-y\right)\)
\(\Leftrightarrow\left(x+y\right)=-1\)
Ta lại có: \(A=x^2+2xy+y^2-3x-3y=\left(x+y\right)^2-3\left(x+y\right)\)
Thay x+y=-1 vào biểu thức A, ta được: \(A=\left(-1\right)^2-3.\left(-1\right)=1+3=4\)
Vậy A=4
Ta có: A = x + xy - y - x - 4xy - 3y
A = (x - x) + (xy - 4xy) - (y + 3y)
A = -3xy - 4y
Thay x = 0,5; y = -4 vào biểu thức A, ta được:
A = -3. 0,5. (-4) - 4.(-4) = 6 + 16 = 22
Vậy giá trị của biểu thức A = 22 tại x = 0,6; y = -4
_ Tại \(x=1;y=\dfrac{1}{2}\) thì:
\(1^2\left(\dfrac{1}{2}\right)^3+1.\dfrac{1}{2}\)
\(=\dfrac{1}{8}+\dfrac{1}{2}=\dfrac{5}{8}\)
Vậy giá trị của b/t đại số = \(\dfrac{5}{8}.\)
thay x=1; y= 1/2 vào biểu thức x^2y^3+xy ta được
1^2 x (1/2)^3 + 1 x 1/2
= 1 x 1/8 + 1/2
=1/8 + 4/8
=5/8
vậy giá trị của biểu thức x^2y^3+xy tại x=1; y=1/2 là:5/8
từ cái đầu=>x-xy+y-xy=(1-x)(1-y)
<=>x+y-2xy=xy-x-y+1
<=>2(x+y)=3xy+1
\(\Leftrightarrow x+y=\frac{3xy+1}{2}\)
\(\sqrt{x^2-xy+y^2}=\sqrt{\left(x+y\right)^2-3xy}=\sqrt{\frac{9x^2y^2+6xy+1}{4}-3xy}=\sqrt{\frac{9x^2y^2-6xy+1}{4}}=\sqrt{\left(\frac{3xy-1}{2}\right)^2}\)với 3xy-1>0
\(\Rightarrow P=\frac{3xy+1}{2}+\frac{3xy-1}{2}=3xy\)
với 3xy-1<(=)0
\(\Rightarrow P=\frac{3xy+1}{2}+\frac{1-3xy}{2}=1\)
Đkxđ : \(x+y\ne0\)
\(x^2-2y^2=xy\Rightarrow x^2-y^2=xy+y^2\)
\(\Rightarrow\left(x-y\right)\left(x+y\right)=y\left(x+y\right)\)
\(\Rightarrow x-y=y\)
\(\Rightarrow x=2y\)
Thay x = 2y vào M có :
\(M=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)
Vậy ...