1) Tìm một phân số có tử bằng 3 , mẫu số là số dương . Biết rằng nếu tử bằng 3 và cộng thêm vào mẫu 14 đơn vị thì giá phân số không đổi
2) Tìm phân số có tổng của tử và mẫu là 144 . Sau khi rút gọn ta được phân số \(\frac{5}{7}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi thêm vào tử số và bớt ở mẫu số một số đơn vị thì hiệu tổng không thay đổi
Hiệu giữa mẫu số và tử số là:
7 + 8 = 15
Tử số phân số đó là:
(97 - 15) : 2 = 41
Mẫu số phân số đó là:
97 - 41 = 56
Phân số càn tìm là \(\frac{41}{56}\)
Đáp số; \(\frac{41}{56}\)
Khi thêm vào tử số và bớt ở mẫu số một số đơn vị thì hiệu tổng không thay đổi
Hiệu giữa mẫu số và tử số là:
7 + 8 = 15
Tử số phân số đó là:
(97 - 15) : 2 = 41
Mẫu số phân số đó là:
97 - 41 = 56
Phân số càn tìm là $\frac{41}{56}$4156
Đáp số;
Gọi phân số đó là \(\frac{3}{a}\)
Theo đề, ta có: \(\frac{3.3}{a+14}=\frac{3}{a}\)
<=>\(\frac{9}{a+14}=\frac{3}{a}\)
<=>\(\frac{9}{a+14}=\frac{9}{3a}\)
<=>\(a+14=3a\)
<=>\(2a=14\)
<=>\(a=7\)
Vậy phân số đó là \(\frac{3}{7}\)
Vì cộng thêm vào tử số 2 đơn vị và bớt 2 đơn vị ở mẫu số thì được phân số mới có tổng của tử số và mẫu số là 97. Suy ra: Tổng của tử số và mẫu số trước khi thêm và bớt là 97
Nếu thêm vào tử số 7 đơn vị và bớt mẫu số đi 8 đơn vị thì được phân số mới có giá trị bằng 1 có nghĩa là phân số mới có tử số bằng mẫu số. Suy ra: Mẫu số cũ lớn hơn tử số cũ là: 7 + 8 = 15
Tử số là: (97 - 15) : 2 = 41
Mẫu số là: 97 - 41 = 56
Vậy: Phân số cần tìm là: 41/56
1) Nếu chuyển từ mẫu số lên tử số \(12\)đơn vị thì tổng của tử số và mẫu số không đổi.
Khi đó tử số mới là:
\(210\div2=105\)
Tử số ban đầu là:
\(105-12=93\)
Mẫu số ban đầu là:
\(210-93=117\)
Phân số cần tìm là: \(\frac{93}{117}\).
2) Nếu thêm \(9\)đơn vị vào tử số thì tổng tử số mới và mẫu số là:
\(175+9=184\)
Tử số mới hay mẫu số là:
\(184\div2=92\)
Tử số là:
\(92-9=83\)
Phân số cần tìm là: \(\frac{83}{92}\).