1 Nêu tính chất 3 đường trung tuyến , tia phân giác của một góc , đường phân giác của tam giác
2 Nêu cách chứng minh 3 điểm thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
3 đường trung tuyến cắt nhau tại một điểm gọi là trọng tâm của tam giác
3 đường phân giác cắt nhau tại một điểm gọi là tâm đường tròn nội tiếp của tam giác
Vì tam giác ABC cân tại A nên tia phân giác AK đồng thời là đưòng trung tuyến.
Mà BD là trung tuyến của tam giác ABC nên K là trọng tâm của tam giác ABC.
Do đó I, K, C thẳng hàng
+) Tính chất của đường trung trực của tam giác: 3 đường trung trực của tam giác cắt nhau tại 1 điểm; điểm đó cách đều 3 cạnh của tam giác đó.
+) Tính chất đường cao trong tam giác: 3 đường cao trong tam giác cắt nhau tại 1 điểm
+) Tính chất đường phân giác của tam giác: 2 đường phân giác của tam giác cắt nhau tại một điểm; điểm đó cách đều 3 cạnh của tam giác đó.
+) Tính chất đường trung tuyến của tam giác: 3 đường trung tuyền của tam giác cắt nhau tại một điểm; điểm đó cách mỗi đỉnh khoảng 2/3 độ dài đường trung tuyến đi qua đỉnh đó.
Chúc bn học tốt!!!!!!
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.
tự kẻ hình nha
đặt AM là tia phân giác của BAC
xét tam giác ABM và tam giác ACM có
BAM=CAM(gt)
AB=AC(gt)
ABC=ACB(gt)
=> tam giác ABM= tam giác ACM(gcg)
=> BM=CM(hai cạnh tương ứng)
=> M là trung điểm của BC=> AM là trung tuyến
vì I là trung điểm AB=> CI là trung tuyến
vì BD giao AM tại K mà BD, AM là trung tuyến=> K là trọng tâm
mà CI là trung tuyến => K thuộc CI=> I,K,C thẳng hàng