CMR:\(9^{2012}-3^{43}-8^{10}\text{ Chia hết cho 10}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(23^{401}+38^{202}-2^{433}=23^{4.100}.23+38^{4.50}.38^2-2^{4.108}.2^1=\left(..1\right).23+\left(..6\right).1444-\left(..6\right).2=\left(..3\right)+\left(..4\right)-\left(..2\right)=\left(..5\right)\)
a) Ta có 53 = 125. Nếu n>3 thì 10n + 125 = 100..0125 có tổng các chữ số là 1 + 1 + 2 + 5 = 9 chia hết cho 9. Vậy số 10n + 125 chia hết cho 9.
Xét trường hợp đặc biệt, n = 0; n = 1; n = 2 thì 10n + 125 bằng 126; 136; 225 đều là các số chia hết cho 9.
Vậy với mọi số tự nhiên n, 10n + 125 chia hết cho 9
b) Ta có 431 = 43; 432 = ..9 (tận cùng là 9); 433 = ..7; 434 = ...1; 435 = ...3 =>
434k+1 = ...3; 434k+2 = ...9; 434k+3 = ...7; 434k = ...1;
Mà 43 = 4.10 + 3 => 4343 = 434.10+3 = ...7 (tận cùng là 7)
Tương tự ta có 1717 cũng có tận cùng là 7
Suy ra 4343 - 1717 tận cùng là 0, chia hết cho 10
a) Ta có 53 = 125. Nếu n>3 thì 10n + 125 = 100..0125 có tổng các chữ số là 1 + 1 + 2 + 5 = 9 chia hết cho 9. Vậy số 10n + 125 chia hết cho 9.
Xét trường hợp đặc biệt, n = 0; n = 1; n = 2 thì 10n + 125 bằng 126; 136; 225 đều là các số chia hết cho 9.
Vậy với mọi số tự nhiên n, 10n + 125 chia hết cho 9
b) Ta có 431 = 43; 432 = ..9 (tận cùng là 9); 433 = ..7; 434 = ...1; 435 = ...3 =>
434k+1 = ...3; 434k+2 = ...9; 434k+3 = ...7; 434k = ...1;
Mà 43 = 4.10 + 3 => 4343 = 434.10+3 = ...7 (tận cùng là 7)
Tương tự ta có 1717 cũng có tận cùng là 7
Suy ra 4343 - 1717 tận cùng là 0, chia hết cho 10