Cho hình vuông ABCD lấy điểm M trên cạnh AD, lấy điểm N trên cạnh CD sao cho MN=AM+CN. Trên tia đối của tia CD lấy điểm K sao cho CK=AM.
a, Chứng minh BM=BK
b, BM vuông góc BK
c, Chứng minh tam giác BMN= tam giác BKN. Từ đó tính góc MBN.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phạm Hồ Thanh Quang
- Kéo dài AM, cắt CD tại K.
- Theo đ/l menelaus:
trong tam giac BCN, đt AK cắt BC tại M, CN tại K và BN tại I. Nên:
MB/MC * KC/KN*IN/IB =1 (độ dài đại số)
+ MB/MC=-1/2
+KC/KN = 4/3 (dễ cm từ talet)
Nên IN/IB=-3/2
- Xét tam giác KMC và CMI:
Có: M chung
MC/MI = MK/CM
(MK/CM= căn 10 (1)
kẻ: IP vuông BC. Có: IP/CN = BI/BN=2/5 nên IP=2/5*a/2=a/5
tương tự, BP/BC=2/5 nên BP=2a/5
mà: BM=a/3 nên MP = a/15
do đó: MI = a(2/45)^(0.5)
MC=2a/3 nên MC/MI= căn 10 (2) )
(1) và (2) suy ra 2 tam giác đồng dạng
Do đó góc C = góc I = 90 độ
Do đó I thuộc đường tròn ngoại tiếp hv ABCD.
Cách giải của bạn có phải lớp 8 không bạn, thấy nó xa vời quá, nhưng bạn không có cách khác thì thôi, cám ơn bạn
Kéo dài AM cắt DC tại P
VÌ ABCD là hình vuông
=> Đặt: AB = BC = CD = DA = a
=> BM = \(\frac{a}{3}\); CN = \(\frac{a}{2}\)
=> MC = BC - BM = \(\frac{2a}{3}\)
+) \(\Delta\)ABM ~ \(\Delta\)PCM ( tự chứng minh )
=> \(\frac{AB}{PC}=\frac{BM}{MC}\)
=> \(\frac{a}{PC}=\frac{\frac{a}{3}}{\frac{2a}{3}}=\frac{1}{2}\)=> PC = 2a
=> PN = PC - NC = 2a - \(\frac{a}{2}\)= \(\frac{3a}{2}\)
+) \(\Delta\)ABI ~ \(\Delta\)PNI ( tự chứng minh )
=> \(\frac{AB}{PN}=\frac{AI}{IP}\)
=> \(\frac{AI}{PI}=\frac{a}{\frac{3a}{2}}=\frac{2}{3}\)(1)
mà \(AI+PI=AP=\sqrt{AD^2+DP^2}=\sqrt{a^2+9a^2}=\sqrt{10}a\)( DP = DC + CP = 3a) (2)
Từ (1); (2) => \(\hept{\begin{cases}PI=\frac{3\sqrt{10}}{5}\\AI=\frac{2\sqrt{10}}{5}\end{cases}}\)
=> \(\frac{IP}{CP}=\frac{\frac{3\sqrt{10}a}{5}}{2a}=\frac{3}{\sqrt{10}}\)
\(\frac{CP}{MP}=\frac{2a}{\sqrt{MC^2+CP^2}}=\frac{2a}{\frac{2\sqrt{10}}{3}a}=\frac{3}{\sqrt{10}}\)
Xét \(\Delta\)ICP và \(\Delta\)CMP có:
\(\frac{IP}{CP}=\frac{CP}{MP}\)( = \(\frac{3}{\sqrt{10}}\))
và ^IPC = ^CPM
=> \(\Delta\)ICP ~ \(\Delta\)CPM
=> ^CIP = ^MCP = 90\(^o\)
=> ^AIC = 90\(^o\)
Gọi O là giao điểm của AC và BD => O cách đều 4 điểm A, B, C, D (1)
Xét \(\Delta\)AIC vuông tại I có: O là trung điểm AC
=> O I = OA = OC (2)
Từ (1); (2)
=> O cách đều 5 điểm A, B, C, D, I
Câu hỏi của Hồ Văn Đạt - Toán lớp 8 - Học toán với OnlineMath
Bạn tự vẽ hình nha
a.Vì tam giác ABC cân tại A nên AB= AC và góc ABC = góc ACB
<=> góc ABM = góc ACN (vì các góc kề bù với nhau)
Xét tam giác ABM và tam giác ACN
Có: AB = AC (CMT)
góc ABM = góc ACN (CMT)
BM = CN (gt)
<=> tam giác ABM = tam giác ACN (c.g.c)
<=> AM = AN ( 2 góc tương ứng)
<=> tam giác AMN cân tại A
b. Vì tam giác ABM = tam giác ACN (CMT)
<=> góc MAB = góc CAN ( 2 góc tương ứng)
Xét tam giác vuông AHB và tam giác vuông AKC
Có: AB= AC (CMT)
góc AHB= góc AKC= 90 độ
góc MAB = góc CAN (CMT)
<=> tam giác AHB = tam giác AKC ( cạnh huyền- góc nhọn)
a) \(\Delta ABC\) cân tại A (gt).
\(\Rightarrow\left\{{}\begin{matrix}AB=AC\\\widehat{ABC}=\widehat{ACB}\end{matrix}\right.\) (Tính chất tam giác cân).
Mà \(\widehat{ABC}+\widehat{ABM}=180^o;\widehat{ACB}+\widehat{ACN}=180^o.\)
\(\Rightarrow\widehat{ABM}=\widehat{ACN}.\)
Xét \(\Delta ABM\) và \(\Delta ACN:\)
\(\widehat{ABM}=\widehat{ACN}\left(cmt\right).\\ MB=CN\left(gt\right).\\ AB=AC\left(cmt\right).\)
\(\Rightarrow\) \(\Delta ABM\) \(=\) \(\Delta ACN\left(c-g-c\right).\)
b) Xét \(\Delta ABH\) và \(\Delta ACK:\)
\(AB=AC\left(cmt\right).\\ \widehat{AHB}=\widehat{AKC}\left(=90^o\right).\\ \widehat{HAB}=\widehat{KAC}\left(\Delta ABM=\Delta ACN\right).\)
\(\Rightarrow\Delta ABH=\Delta ACK\) (cạnh huyền - góc nhọn).
\(\Rightarrow\) AH = AK (2 cạnh tương ứng).
c) Xét \(\Delta AOH\) và \(\Delta AOK:\)
\(AH=AK\left(cmt\right).\\ AOchung.\\ \widehat{AHO}=\widehat{AKO}\left(=90^o\right).\)
\(\Rightarrow\) \(\Delta AOH\) \(=\) \(\Delta AOK\) (cạnh huyền - cạnh góc vuông).
\(\Rightarrow\) OH = OK (2 cạnh tương ứng).
Mà \(\left\{{}\begin{matrix}OB=OH-HB;OC=OK-KC.\\HB=KC\left(\Delta ABH=\Delta ACK\right).\end{matrix}\right.\)
\(\Rightarrow\) OB = OC.
\(\Rightarrow\Delta OBC\) cân tại O.