K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2019

Câu 1: ĐK: x khác -1/2, y khác -2

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:

\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)

=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)

Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>

21 tháng 2 2019

\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)

\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)

             \(\Leftrightarrow a^2+1=2a\)

             \(\Leftrightarrow\left(a-1\right)^2=0\)

            \(\Leftrightarrow a=1\)

           \(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)

Dùng cái đầu đi ạ

cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~

18 tháng 11 2016

Xét phương trình (1) ta có

\(2x^2-y^2+xy-5x+2=\sqrt{y-2x+1}-\sqrt{3-3x}\)

\(\Leftrightarrow\left(x+y\right)\left(2x-y\right)-\left(x+y\right)-2\left(2x-y\right)+2=\sqrt{y-2x+1}-\sqrt{3-3x}\)

\(\Leftrightarrow\left(x+y-2\right)\left(2x-y-1\right)=\sqrt{y-2x+1}-\sqrt{3-3x}\)

Đặt \(\hept{\begin{cases}\sqrt{y-2x+1}=a\left(a\ge0\right)\\\sqrt{3-3x}=b\left(b\ge0\right)\end{cases}\Rightarrow a^2-b^2=x+y-2}\)thì ta có

\(PT\Leftrightarrow-a^2\left(a^2-b^2\right)=a-b\)

\(\Leftrightarrow\left(b-a\right)\left(a^3+a^2b+1\right)=0\)

Ta thấy là \(\left(a^3+a^2b+1\right)>0\)

\(\Rightarrow a=b\)

\(\Leftrightarrow y-2x+1=3-3x\)

\(\Leftrightarrow y=2-x\)

Thế vào pt (2) ta được

\(x^2-2+x-1=\sqrt{4x+2-x+5}-\sqrt{x+4-2x-2}\)

\(\Leftrightarrow x^2+x-3=\sqrt{3x+7}-\sqrt{2-x}\)

Giải tiếp sẽ có được nghiệm \(\hept{\begin{cases}x=-2\\y=4\end{cases}}\)

18 tháng 11 2016

phương trình (1) tách như sau:

(x+y)(2x−y)−(x+y)−2(2x−y)+2=√y−2x+1−√3−3x⇔(x+y−2)(2x−y−1)=√y−2x+1−√3−3x↔{√y−2x+1=a(a≥0)√3−3x=b(b≥0)⇒a2−b2=x+y−2;−a2=2x−y−1⇒(a2−b2)(−a2)=a−b⇔(a−b)(−a3−a2b−1)=0⇔a=b(−a3−a2b−1<0;a≥0;b≥0)→a=b⇔y−2x+1=3−3x⇔y=2−x(x+y)(2x−y)−(x+y)−2(2x−y)+2=y−2x+1−3−3x⇔(x+y−2)(2x−y−1)=y−2x+1−3−3x↔{y−2x+1=a(a≥0)3−3x=b(b≥0)⇒a2−b2=x+y−2;−a2=2x−y−1⇒(a2−b2)(−a2)=a−b⇔(a−b)(−a3−a2b−1)=0⇔a=b(−a3−a2b−1<0;a≥0;b≥0)→a=b⇔y−2x+1=3−3x⇔y=2−x

thế vaò (2) là ok

k cho mình nhé xin các bạn đó cho mình 1 cái có hại gì đến các bạn đâu

1 tháng 3 2020

\(\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)

\(\Leftrightarrow x^2-2x\sqrt{y}+2y+y^2-2y\sqrt{z}+2z+z^2-2z\sqrt{x}+2x=x+y+z\)

\(\Leftrightarrow\left(x-\sqrt{y}\right)^2+\left(y-\sqrt{z}\right)^2+\left(z-\sqrt{x}\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-\sqrt{y}=0\\y-\sqrt{z}=0\\z-\sqrt{x}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{y}\\y=\sqrt{z}\\z=\sqrt{x}\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}x=y=z=0\\x=y=z=1\end{cases}}\)

2 tháng 10 2016

Ta có : \(\hept{\begin{cases}2x^2+y^2-3xy-4x+3y+2=0\\\sqrt{x^2-y+3}+\sqrt{y-x+1}=2\end{cases}}\)

Xét phương trình đầu : \(2x^2+y^2-3xy-4x+3y+2=0\)

\(\Leftrightarrow\left(2x^2-xy-2x\right)+\left(-2xy+y^2+2y\right)+\left(-2x+y+2\right)=0\)

\(\Leftrightarrow x\left(2x-y-2\right)-y\left(2x-y-2\right)-\left(2x-y-2\right)=0\)

\(\Leftrightarrow\left(2x-y-2\right)\left(x-y-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-y-2=0\\x-y-1=0\end{cases}}\)

Từ đó thay y bởi x vào pt còn lại để tìm nghiệm.

2 tháng 10 2016

giúp mình câu khác với

4 tháng 8 2019

MN GIẢI GIÚP E VỚI MAI E ĐI HOK RỒI