K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔBAK có

BH vừa là đường cao, vừa là trung tuyến

nên ΔBAK cân tại B

=>BA=BK

Xét ΔCAK có

CH vừa là đường cao, vừa là trung tuyến

nên ΔCAK cân tại C

Xét ΔBAC và ΔBKC có

BA=BK

AC=KC

BC chung

=>ΔBAC=ΔBKC

15 tháng 7 2016

a, Xét tam gác ABH và tam giác ACH có:

     AB=AC (gt)

     BH=CH 

     AH là cạnh chung

=> tam giác ABH=ACH ( c.c.c)

=> góc BAH = CAH ( hai góc tương ứng )

Vì tam giác ABC là tam giác cân mà AH vừa là trung điểm vừa là tia phân giác thì AH cũng là đường cao của ta giác ABC => AH vuông góc vs BC

b, Xét tam giác vuông ABH và tam giác vuông KCH có :

                   BH=CH (gt)

                    HK=HA (gt) 

=> tam giác vuông ABH = tam giác vuông KCH ( hai cạnh góc vuông )

=> góc HAB = góc HKC ( hai góc tương ứng )

Vì góc HAB = góc HKC nên CK//AB ( cặp góc sole trong )

24 tháng 12 2017

cau nay tui cung lm ko ra

23 tháng 3 2020

a) Xét \(\Delta BAI\)và \(\Delta BAC\)có :

AB : cạnh chung

\(\widehat{BAI}=\widehat{BAC}\left(=90^0\right)\)

AC = AI ( gt )

\(\Rightarrow\Delta BAI=\Delta BAC\left(c-g-c\right)\)

\(\Rightarrow\widehat{ABI}=\widehat{ABC}\)( do 2 tam giác = nhau )

Mà \(\widehat{ABI}+\widehat{BAH}=90^0\)( tổng 3 góc = 1800 mà có 1 góc = 900 ( do AH\(\perp\)BI ) nên tổng 2 góc còn lại = 900 )

\(\Rightarrow\widehat{ABC}+\widehat{BAK}=90^0\)

\(\Rightarrow\widehat{BAH}=\widehat{BAK}\)

=> BA là đường phân giác của \(\widehat{HBK}\)

b) Ta có tam giác vuông ABK = CBA ( ch-gn ) => AB2 = BK . BC (1)

Ta có tam giác vuông ABH = IBA ( ch-gn ) => AB2 = BH . BI (2)

Từ (1) và (2) => BK . BC = BH . BI => HK // IC ( theo định lí Ta-let )

c) Gọi E là giao điểm của HK và BA

Có tam giác BHK cân ( BE là đường cao, phân giác ) => BH = BK

Ta có BA là đường trung trực của HK => HA = KA

Có tam giác vuông BHN = BKM ( gn-cgv ) => HN = KM

=> HA + AN = AK + AM => AN = AM => Tam giác AMN cân tại A

22 tháng 12 2016

a) Xét tam giác ABC có AB = AC => Tam giác ABC cân tại A

=> AH vừa là đường trung tuyến vừa là tia phân giác góc BAC

b) Vì tam giác ABC cân tại A (cmt) 

=> AH cũng là đường cao

=> AH vuông góc BC
c) Xét tứ giác ABCK có

    H là trung điểm BC (gt)

    H là trung điểm AK (gt)

=> Tứ giác ABCK là hình bình hành

=> CK // AB

30 tháng 10 2017

xét tam giac abc= tam giác ahc có

ab=ac (gt)

hb=hc (gt)

ah canh chung

\(\Rightarrow\)tam giác ahb=tam giác ahc(c.c.c)

22 tháng 12 2016

a) Xét tam giác AHB và tam giác AHC có :

AB=AC ( gt )

BH = HC ( vì H là trung điểm của cạnh BC )

AH : cạnh chung

do đó tam giác AHB = tam giác AHC ( c.c.c )

suy ra góc BAH = HAC ( 2 góc t/ứ )

nên AH là tia phân giác của góc BAC

b) Có tam giác AHB = tam giác AHC ( c/m trên )

suy ra góc BHA = góc CHA ( 2 góc t/ứ )

mà B , H , C thẳng hàng

suy ra góc BHC là góc bẹt

suy ra góc BHA = góc CHA = 90 độ

nên AH vuông góc với BC

 

 

 

6 tháng 9 2021

yeucám ơn bn nhìu

 

21 tháng 2 2018

Ta có :

    \(\widehat{B}+\widehat{C}=90^o\)\(\Delta ABC\)vuông tại A )

Mà \(\widehat{B}=2\widehat{C}\)

Suy ra \(2\widehat{C}+\widehat{C}=90^o\)

    \(3\widehat{C}=90^o\)

\(\widehat{C}=30^0\)

Do đó \(\widehat{B}=90^o-30^o=60^o\)