Cho tam giác ABC, kẻ AH vuông góc BC. Trên tia đối của tia HA lấy điểm K sao cho: AH = HK. Chứng minh rằng :
a) BC là trung trực của AK
b) Tam giác ABC = tam giác KBC
c) BC là phân giác của góc ABK và CB là tia phân giác của góc ACK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔBAK có
BH vừa là đường cao, vừa là trung tuyến
nên ΔBAK cân tại B
=>BA=BK
Xét ΔCAK có
CH vừa là đường cao, vừa là trung tuyến
nên ΔCAK cân tại C
Xét ΔBAC và ΔBKC có
BA=BK
AC=KC
BC chung
=>ΔBAC=ΔBKC
a, Xét tam gác ABH và tam giác ACH có:
AB=AC (gt)
BH=CH
AH là cạnh chung
=> tam giác ABH=ACH ( c.c.c)
=> góc BAH = CAH ( hai góc tương ứng )
Vì tam giác ABC là tam giác cân mà AH vừa là trung điểm vừa là tia phân giác thì AH cũng là đường cao của ta giác ABC => AH vuông góc vs BC
b, Xét tam giác vuông ABH và tam giác vuông KCH có :
BH=CH (gt)
HK=HA (gt)
=> tam giác vuông ABH = tam giác vuông KCH ( hai cạnh góc vuông )
=> góc HAB = góc HKC ( hai góc tương ứng )
Vì góc HAB = góc HKC nên CK//AB ( cặp góc sole trong )
a) Xét \(\Delta BAI\)và \(\Delta BAC\)có :
AB : cạnh chung
\(\widehat{BAI}=\widehat{BAC}\left(=90^0\right)\)
AC = AI ( gt )
\(\Rightarrow\Delta BAI=\Delta BAC\left(c-g-c\right)\)
\(\Rightarrow\widehat{ABI}=\widehat{ABC}\)( do 2 tam giác = nhau )
Mà \(\widehat{ABI}+\widehat{BAH}=90^0\)( tổng 3 góc = 1800 mà có 1 góc = 900 ( do AH\(\perp\)BI ) nên tổng 2 góc còn lại = 900 )
\(\Rightarrow\widehat{ABC}+\widehat{BAK}=90^0\)
\(\Rightarrow\widehat{BAH}=\widehat{BAK}\)
=> BA là đường phân giác của \(\widehat{HBK}\)
b) Ta có tam giác vuông ABK = CBA ( ch-gn ) => AB2 = BK . BC (1)
Ta có tam giác vuông ABH = IBA ( ch-gn ) => AB2 = BH . BI (2)
Từ (1) và (2) => BK . BC = BH . BI => HK // IC ( theo định lí Ta-let )
c) Gọi E là giao điểm của HK và BA
Có tam giác BHK cân ( BE là đường cao, phân giác ) => BH = BK
Ta có BA là đường trung trực của HK => HA = KA
Có tam giác vuông BHN = BKM ( gn-cgv ) => HN = KM
=> HA + AN = AK + AM => AN = AM => Tam giác AMN cân tại A
a) Xét tam giác ABC có AB = AC => Tam giác ABC cân tại A
=> AH vừa là đường trung tuyến vừa là tia phân giác góc BAC
b) Vì tam giác ABC cân tại A (cmt)
=> AH cũng là đường cao
=> AH vuông góc BC
c) Xét tứ giác ABCK có
H là trung điểm BC (gt)
H là trung điểm AK (gt)
=> Tứ giác ABCK là hình bình hành
=> CK // AB
a) Xét tam giác AHB và tam giác AHC có :
AB=AC ( gt )
BH = HC ( vì H là trung điểm của cạnh BC )
AH : cạnh chung
do đó tam giác AHB = tam giác AHC ( c.c.c )
suy ra góc BAH = HAC ( 2 góc t/ứ )
nên AH là tia phân giác của góc BAC
b) Có tam giác AHB = tam giác AHC ( c/m trên )
suy ra góc BHA = góc CHA ( 2 góc t/ứ )
mà B , H , C thẳng hàng
suy ra góc BHC là góc bẹt
suy ra góc BHA = góc CHA = 90 độ
nên AH vuông góc với BC