cho tam giác ABC có Góc A bằng 90 độ, AB=AC. Qua đỉnh A kẻ đường thẳng xy sao cho không cắt đoạn thẳng BC. Kẻ BD và CE vuông góc với xy ( D,E thuộc xy ). Chứng minh rằng:
a) Tam giác ABD=Tam giác CAE.
b) DE=BD+CE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn kham khảo câu này nhé dù không làm nhưng bạn có thể cho mình 1 tk được ko.
Câu hỏi của Trịnh Tuấn Tú - Toán lớp 7 - Học toán với OnlineMath
Do xy không cắt đoạn BC
=> xy //BC
=> ECBD là hình chữ nhật'
Xét \(\Delta ABD\)và \(\Delta ACE\)có: \(\hept{\begin{cases}AB=AC\left(gt\right)\\\widehat{AEC}=\widehat{ADB}=90^o\\EC=BD\end{cases}}\)
=> \(\Delta ABD=\Delta ACE\)
=> AE=AD
=> Tam giác ADE cân tại E
\(\widehat{ACB}=45^o\Rightarrow\widehat{ECA}=45^o\)
=> EC=EA
Tương tự: AD=BD
=> DE=AE+AD=EC+BD
a, Xét \(\Delta\)ABD và \(\Delta\)ACE ta cs :
AB = AC (gt)
^AEC = ^ADB = 900
CE = BD (gt)
=> \(\Delta\)ABD = \(\Delta\)ACE
b, Ta có xy không cắt BC
=> xy//BC
=> ^DBA= ^DAB (vị trí đồng vị)
=> \(\Delta\) BDA cân tại D
=> DA=DB
\(\Delta\)EAC cân tại E (cmt)
=> EA=EC
=> DE = AD + AC = BD + CE